首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three nickel complexes with a new multi-sulfur 1,2-dithiolene ligand, (n-Bu4N)[Ni(cddt)2] 1, (Ph4P)[Ni(cddt)2] 2 and [Ni(cddt)2] 3 (cddt=4a, 6, 7, 7a-5H-cyclopenta[b]-1,4-dithiin-2,3-dithiolate), have been synthesized and characterized by electrochemical measurements, IR, EPR and UV-Vis-NIR spectroscopies. The crystal structure of complex 2 is determined. Their optical nonlinearities are measured by the Z-scan technique with an 8 ns pulsed laser at 532 nm and all exhibit NLO absorptive abilities. Complexes 1 and 2 both exhibit effective self-defocusing performance (n2=−5.81×10−10 esu for 1 and −4.51×10−10 esu for 2). The optical limiting (OL) effects were observed with nanosecond and picosecond laser pulses. The OL capability of complex 3 is superior to C60 at the same experimental condition in ns measurements.  相似文献   

2.
Four molecular solids consisting of the 7,7,8,8-tetracyanoquinodimethane (TCNQ) radical and benzylpyridinium or benzylquinolinium derivatives with molar ratios of 1:1 (1-3) and 2:1 (4) have been prepared and characterized. In the crystals of 1 and 3, TCNQ monoanions and the corresponding cations form segregated stacks, which are regular in 1 but irregular in 3. Instead of segregated stacks, TCNQ monoanions in 2 form isolated π-dimers. In the crystals of 4, two crystallographic independent TCNQ species possess almost equal fractional negative charge (ca. −0.5). Two types of TCNQ species form a tetrad, these tetrads make a TCNQ stack with the pattern …BAAB…BAAB… along the crystallographic a-b direction. The magnetisms for 1-4 can be simply explained by the formation of singlet spin state. A broken symmetry approach in a density functional theory framework at the ub3lyp/6-31 g level was used to calculate the magnetic exchange constants in 1-4. The results qualitatively demonstrate the observed magnetic properties.  相似文献   

3.
Four new polycarboxylate ligands H3Ln have been synthesized by the attachment of two or one 2,2′-bipyridine subunits onto a diethylenetriamine pentacarboxylic acid (DTPA-bisamide derivatives: H3L1, H3L2) or a diethylenetriamine tricarboxylic acid (DTTA derivatives: H3L3, H3L4) core. The neutral EuIII and TbIII complexes of these chelates have been prepared and studied from their UV-vis and luminescence data. The main photophysical characteristics of these complexes, i.e. the absorption and luminescence spectra, the metal-centred lifetimes and the overall luminescence yields (Φ) were measured in buffered aqueous solutions. In addition the role played by non-radiative paths (vibrational energy transfer involving coordinated water molecules, involvement of ligand-to-metal charge-transfer excited states, or metal→ligand back-transfer) was investigated. In all complexes, we found that the bidentate bipyridine chromophore is not coordinated to the lanthanide ion, allowing one (LnL1, LnL2) or two (LnL3, LnL4) water molecules to penetrate the first coordination sphere of the metal. Although the bipyridine chromophore behaves as remote (from the binding site) light-harvesting unit for the lanthanide ion in these systems, a sizeable sensitization of the Eu- and Tb-centred luminescence can be effective (LnL2, LnL3, Φ=16-19% in aerated D2O solutions). Our photophysical investigations show that overall non-radiative deactivation is not dependant of thermally activated non-radiative channels but the efficiency of the ligand→Ln intramolecular energy transfer has to be taken into account to explain the obtained results.  相似文献   

4.
Five zinc (II) complexes (1-5) with 4′-phenyl-2,2′:6′,2″-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively.  相似文献   

5.
4,4′-bis(N-carbazolyl)tolan (BCT) and 4,4′-bis[N-(3,6-di-t-butyl)carbazolyl]tolan (BCT-t-Bu) were synthesized as π-expanded analogs of 4,4′-bis(N-carbazolyl)biphenyl. Their photophysical characteristics both in solution and films were thoroughly investigated. Interestingly, the phosphorescence spectrum of BCT was significantly medium-dependent, and the emission maximum was red-shifted by 131 nm from 489 nm in solution at 77 K to 620 nm in a deposited film at 5 K, suggesting the presence of strong intermolecular interactions in the film. BCT and BCT-t-Bu were found to be useful as host materials for fluorescence-based organic light emitting diodes (OLEDs). However, their low triplet energy levels in films negated their potential to act as hosts in phosphorescence-based OLEDs.  相似文献   

6.
The hydrothermal synthesis, single crystal X-ray structures and magnetic properties of two layered cobalt-carboxylate complexes, 2[CoII(O2CCH(OH)C6H5)2] (1) and 2[CoII(O2CCH(NH2)C6H5)2] (2), where O2CCH(OH)C6H5 is mandalate and O2CCH(NH2)C6H5 is phenylglycinate, are described. Pale pink crystals of 1 and 2 were obtained by the reaction of cobalt nitrate and the enantiomer-pure acids at 120 °C. In each case, the structure consists of stacks of quasi square-grid polymeric sheets consisting of carboxylato- bridges, M-O-C-O-M, and the presence of both d- and l-enantiomers of the ligands segregated on each face of the layer. The ligands exhibit both chelating and bridging functions with the carboxylate group adopting an anti-anti mode. The magnetic properties are characteristic of weakly interacting paramagnets where the moments are elevated by an important orbital contribution via spin-orbit coupling.  相似文献   

7.
A novel ligand 3,6-bis(1,10-phenathroline-[5,6-d] imidazole-2-yl)carbazole (Bpic) containing hole- and electron-transporting groups was firstly designed. Its polymeric complexes of Bpic with Cu(∥), Zn(∥) were successfully synthesized. The UV-vis absorption, fluorescence spectra and thermal properties of these complexes were investigated. At room temperature, complexes 2, 3 emit blue luminescence from 445 to 485 nm in DMSO solution, and emit green/yellow and orange luminescence from 523 to 585 nm in solid state. In comparison with the free ligand, the polymeric complexes exhibit a bathochromic shift. It can be assigned to the extended π-conjugation of the complexes.  相似文献   

8.
A series of high luminescent europium complexes have been synthesized, such as Eu(TFNB)3phen (1), Eu(PFNP)3phen (2), Eu(HFNH)3phen (3) and Eu(PFND)3phen (4), which have β-diketone ligands containing fluorinated alkyl chains with different lengths and conjugated naphthyl groups, i.e., 4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dione (TFNB); 4,4,5,5,5-pentafluoro-1-(2-naphthyl)pentane-1,3-dione (PFNP); 4,4,5,5,6,6,6-heptafluoro-1-(2-naphthyl)hexane-1,3-dione (HFNH) and 4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-1-(2-naphthyl)decane-1,3-dione (PFND). And 10-phenanthroline (phen) is coordinated as the neutral second ligand in 1-4. The crystal structures of 1 and 2 have been studied, which are typical and similar to that of 3. The results of TGA-DTA suggest that these Eu complexes have good thermal stabilities. By means of absorption and (time resolved) emission spectroscopy including determination of luminescence quantum yields, energy transfer dynamics and so on, the following results have been obtained: first, these Eu complexes show characteristic pure red color photoluminescence emission with high quantum efficiencies from the central Eu3+ ions through the excitation of the ligands; secondly, photophysical properties of 1, 2, 3 and 4, especially the lifetimes of excited states 5D0 of Eu3+ ions and quantum efficiencies are influenced by the different lengths of fluorinated alkyl chains, though the singlets (S1) and triplets (T1) of the fluorinated ligands are almost the same.  相似文献   

9.
Schiff bases N,N′-o-phenylenebis (salicylideneimine) (H2L1), N,N′-p-phenylenebis (salicylideneimine) (H2L2) and their corresponding boron complexes (BF2)2L1, (BF2)2L2 were synthesized, respectively. The two boron complexes have been characterized by 1H NMR, mass spectrometry and elemental analysis, while the luminescent properties of them were investigated with UV-VIS spectroscopy and photoluminescence spectroscopy. Then the three-layer devices [ITO/NPB (60 nm)/(BF2)2L1 (50 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm)] (device I) and [ITO/NPB (60 nm)/(BF2)2L2 (50 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm)] (device II) were fabricated by vacuum deposition. These two devices both exhibited blue green emission at 500 nm, but showed different luminances and efficiencies.  相似文献   

10.
Four heteronuclear Zn-Ln coordination complexes, [Nd2Zn2(p-toluylate)10(phen)2] (1), [Ln2Zn2(p-toluylate)10(phen)2]·2(HAc)1/2 (Ln=Tb 2, Ho 3) and [PrZn2(p-toluylate)5(Ac)2(phen)2] (4) (phen=1, 10-phenanthroline), are synthesized by the hydrothermal method and their structures are measured by single-crystal X-ray diffraction. The IR and UV-vis-NIR absorption spectra and the emission spectra in the visible and near-infrared (NIR) regions of the four complexes are determined at room temperature. In the NIR region (or in the visible region), the complexes show the characteristic emission bands of Ln3+ ions, which may be attributed to sensitization from the ligands (the ligand directly-coordinated to Ln3+ ions and d-block) to Ln3+ ions after forming the Zn-Ln complexes. It is reported for the first time in this paper that the Zn-Pr complex 4 can exhibit the broad emission band in the NIR region. In addition, the shift, split or broadness of the ff emission bands in the NIR region of complexes 1, 3 and 4 are discussed.  相似文献   

11.
The photophysical investigation of different para-substituted tetraphenylporphyrins (TP), viz., meso-tetra(4′-hydroxyphenyl)-21H-23H-porphyrin(1),meso-tetrakis(4′-hex-5-enyloxyphenyl)-21H-23H-porphyrin(2), meso-tetrakis(4′-oct-7-enyloxyphenyl)-21H-23H-porphyrin(3) and meso-tetrakis(4′-undecyloxyphenyl)-21H-23H-porphyrin (4) revealed that except for quantum yield (φ) the para-substitution has little effect on any other photophysical properties like lifetime, excitation, emission wavelength, etc. The host-guest type interactions of these tetraarylporphyrins (TP 1-4), with [60]-fullerene (F) have been studied with 1H NMR and fluorescence spectrometric techniques in carbon tetrachloride medium. Fluorescence studies revealed that the Q band of the TPs was sufficiently quenched upon addition of F. All the fullerene/porphyrin systems were found to produce stable complexes with 1:1 stoichiometry. Binding constants (K) of all the fullerene/porphyrin complexes have been determined by fluorescence quenching method. The association constant values for 1/F have been determined from plots of the Stern-Volmer equation (103.713×104) and the Benesi-Hildebrand equation (110.440×104). It has been observed that the insertion of long chain oxo-alkenyl/alkyl group in the para position of TPs in 2, 3 and 4 diminished the K values for F by two, four and even ten times with respect to that of 1. The observed trend in variation of the binding constants was supported by a gradual variation in the shift of 1H NMR signal when measurements were carried out in CDCl3.  相似文献   

12.
Tetranuclear europium(III) complexes, [Eu4(μ-O)(L1)10] (L1=2-hydroxy-4-octyloxybenzophenone,1) and [Eu4(μ-O)(L2)10] (L2=2-hydroxy-4-dodecyloxybenzophenone,2) were synthesized by the reaction of lanthanide nitrates with L1 or L2 in the presence of triethylamine in methanol. The photosensitized emission bands of the both Eu(III) complexes in THF-d8 were observed around 579, 590, 615, 653, and 699 nm by the excitation of the ligands at 380 nm, whereas the emission from the mononuclear complex 3 containing ethanol molecules was almost quenched. The emission efficiencies were determined to be 3.1±0.1% for 1 and 3.9±0.1% for 2, respectively. The differential scanning calorimetry (DSC) measurements demonstrated that the decomposition points of 1 and 2 were 309 °C and 320 °C, respectively, indicating high thermostability of these complexes compared to the mononuclear Eu(III) complex 3 (250 °C). New strategy for designing stable rare earth compounds giving strong emission would be emphasized by introducing polynuclear complexes. Polynuclear complexes should open a wide range of molecular design for photosensitized luminescence and thermal stability.  相似文献   

13.
FT-IR and Raman vibrational spectra and electronic emission spectra have been recorded for enantiomers of europium complexes with DBM: dibenzoylmethanate 1,2, and TTFA: 2-thenoyltrifluoroacetonate 3,4, employing the chiral ligands LSS(+)- and LRR(-)-4,5-pinene bipyridine. Contrary to the previously published X-ray data, where geometrical differences were stated to occur for particular enantiomers, the vibrational (and the emission) spectra of the individual optical isomers of a complex are not distinguishable. Using excitation into the Eu3+5D2 multiplet term, the emission intensity is weak from 5D1, whereas a complex structure is observed for the 5D07FJ transitions. Features in the vibronic sidebands exhibit similar derived vibrational energies to those observed in the Raman spectra. Fittings of 25 4f6 crystal-field energy levels of 2 and 4 have been attempted with some approximations concerning the local Eu3+ environments. The 5D0 emission lifetimes are monoexponential and are 0.5 (1,2) and 0.9 ms (3,4) at room temperature.  相似文献   

14.
Structural and thermal properties of the two isostructural lanthanide metal-organic frameworks: [Er2(pdc)3(dmf)2]·dmf (1) and [Tm2(pdc)3(dmf)2]·dmf (2) where pdc = C5H3N(COO)22− and dmf = N,N′-dimethylformamide, have been investigated. They are characterized by the BET surface area of 302 and 101 m2/g for 1 and 2, respectively. This paper deals with the influence of activation conditions on sorption properties of the investigated complexes. Thermal investigations of as-made and activated complexes point to their entirely different thermal decompositions.  相似文献   

15.
A series of novel substituted 1,3,4-oxadiazole derivatives containing pyrido[1,2-a]benzimidazole moiety were synthesized and characterized using FTIR, 1H NMR, 13C NMR, and HRMS. An efficient tandem reaction was employed as a key step in constructing the pyrido[1,2-a]benzimidazole moiety under very mild condition. The structure of compound 4a was established by X-ray crystallography. The UV-vis absorption and fluorescence spectral characteristics of these compounds were investigated in several solvents. Compounds 4a-i display similar absorptions, with absorption peaks ranging from 330 to 339 nm in acetonitrile, while the absorption maxima of compound 4j bearing a diphenylamino group on the benzene ring is red-shifted distinctly to 377 nm due to the strong electron-donating property of its substituent and extended π-conjugated system. All these target heterocyclic compounds present blue-green emissions (461-487 nm) in dilute solutions and show high quantum yields of fluorescence (ФPL=0.65−0.99) in dichloromethane.  相似文献   

16.
Two new isostructural complexes of europium picrate (Eu-Pic) with pentaethylene glycol (EO5) and 18-crown-6 (18C6) ligands formed complexes of molecular formula [Eu(Pic)2(18C6)]+(Pic)I and [Eu(Pic)2(EO5)]+(Pic)II have been isolated and characterised. Compound I showed 10-coordination number through six oxygen atoms from the 18C6 ligand and two bidentate picrate anions. Meanwhile, compound II exhibited 9-coordination number via six oxygen atoms from EO5 ligand, two oxygen atoms from a bidentate and one oxygen atom from monodentate picrate anions. Photoluminescence (PL) spectra of the solid-state europium complexes display sharp lines which are assigned to 5D07F0-4 and 5D17F1,2,4 transitions. No emission of polyether ligands is observed, indicating that the energy transfer from the polyether ligands to the Eu3+ ion is quite efficient. The PL spectra of [Eu(Pic)2(OH2)6]+(Pic)·6H2O III, [Eu(NO3)3(OH2)3]·(18C6) IV, [Eu(NO3)3·6H2O] V and Eu2O3VI are also observed. Compounds I-IV exhibited high Ω2 intensity parameter values, namely 16.93, 10.23, 17.10 and 12.35 (in units of 10−20 cm2), respectively. These relatively high values reflect the hypersensitive behaviour of the 5D07F2 transition and indicate that the Eu3+ ion is located in a highly polarisable chemical environment.  相似文献   

17.
Three novel Cu(I) complexes, [CuDPEphos(NN)]BF4, where NN=1-(4-5′-phenyl-1,3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (OXD-Pybm; L1) (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzimidazole (Carl-Pybm; L2) (2), and 1-H-2-pyridinylbenzimidazole (HPybm; L3) (3), were synthesized. The photoluminescent (PL) properties of 1-3 and the electroluminescent (EL) properties of complexes 1 and 2 were systematically studied. The maximum brightness of 2-based devices was 8669 cd/m2, which should be the best among the reported Cu(I) complexes-based devices.  相似文献   

18.
The quenching behavior of the triplets of C60 by various aniline derivatives (1a-d and 2a-e) was investigated by means of laser flash photolysis in benzonitrile at 293 K. Electron transfer process was proposed to be the main mechanism because of the direct detection of radical ions of aniline derivatives and C60 in time-resolved transient absorption spectra. The quenching rate constants (kq) of by different substrates determined at 740 nm approach or reach the diffusion-controlled limit. DFT method was employed to calculate the unknown oxidation potentials of substrates in solution. With these Eox values, free energy changes (ΔG) were obtained through Rehm-Weller equation. Dependence of observed quenching rate constants on the free energy changes further indicates the photoinduced reactions between 3C60* and substrates proceed through an electron transfer mechanism. Obtained kq values for the aniline derivatives are impacted obviously by ground-state configurations and the kinds substituents quantified by Hammett σ constant. Good correlation between log kq and σ values conforms to the empirical Hammett equation. A more negative ρ value (−3.356) was gained for anilines (2a-e) than that of N,N-dimethylanilines (1a-d) (−1.382), which suggests a more susceptible reactivity for the former substrates. Charge density distribution of reaction center “N” originated from quantum calculation supports this suggestion. In addition, a relationship between quenching rate constants and solvent viscosity was gained from C60/dimethyl-p-toluidine system in altered mixtures of acetonitrile and toluene.  相似文献   

19.
Four Ln3+ coordination complexes with the formulas [Ln(p-toluylate)2(Ac)(H2O)]n (Ln=Ho 1, Yb 2) and {[Ln2(OOCCH2CH2COO)3(H2O)4]·6H2O}n (Ln=Ho 3, Yb 4) were synthesized hydrothermally. Their structures were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are isomorphic and form infinite 2D network structures comprising p-toluylate and acetate (Ac) moieties. Complexes 3 and 4 are also isomorphic and possess infinite 2D structures in which succinate acts as bridging ligands that are connected to a 3D hydrogen bonding network by O–H…O hydrogen bonds. Solid-state IR and UV-Vis-NIR spectra, excitation and emission spectra were determined for the four complexes at room temperature. Complexes 1 and 2 exhibit characteristic NIR emission bands of Ln3+ ions but these are shifted and split relative to the theoretical positions. This is also evident for their UV-Vis-NIR spectra. The influence of ligands on enhancing the NIR luminescence of Ln3+ ions in complexes is discussed.  相似文献   

20.
The nonlinear optical absorptions of two 5,5′-bis(diphenylphosphino)-2,2′-bithiophene derivatives, Ph2(X)P(C4H2S)2P(X)Ph2 (X = O, 1; S, 2), have been investigated by direct transmission measurement with both picosecond and nanosecond laser pulses from 420 nm to 480 nm. Saturated dichloromethane solutions of 1 and 2 exhibit strong nonlinear optical absorptions in this violet-blue spectral region with that of 2 being stronger at all wavelengths. In the picosecond regime, at 420 nm, the transmittance rapidly falls to 50% when the incident fluence is 0.22 J/cm2 for 1 and 0.11 J/cm2 for 2. Two-photon absorption appears to be the primary mechanism for this nonlinear absorption. The two-photon absorption coefficients β for 1 (2.1 cm/GW) and 2 (4.4 cm/GM) were obtained by fitting the measurement of transmittance as the function of incident beam intensity at 420 nm. These β values are comparable with some of the best results obtained for organic materials in the green, red and infrared spectral region. Both compounds also show fluorescence with an emission peak at 390 nm for 1 and 400 nm for 2. The fluorescence of 1 is considerably stronger than is that of 2. The combination of the wide band gap and strong fluorescence emission of 1 makes it a promising candidate as a host material for blue organic light emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号