首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The catalytic effects of a submonolayer of lead on noble metals have been shown and discussed in terms of a previously published model. A theoretical analysis of these effects is presented. It was demonstrated that foreign metal monolayers allow a determination of the true catalytic activity of electrodes in the case of self-poisoning reactions. A volcano-shaped curve for oxidation of formic acid on noble metal electrodes was obtained.  相似文献   

2.
Catalytic effects of foreign metal monolayers deposited at underpotentials have been found for the oxidation of formic acid on palladium electrode. Palladium is known to form no poisoning species in oxidation of HCOOH. However, the auto-inhibition of the reaction is found, caused most probably by a species xCx(OH)2. Submonolayer amounts of Pb, Bi, Cd, Tl, Ag and Cu electrosorbed at underpotentials exhibited significant catalytic effects which could be explained by the so-called “third-body” effect in terms of a previously published semiquattitative model. The results have bearing on the understanding of the catalytic effects observed under comparable conditions on platinum and rhodium. Since these effects are orders of magnitude larger than those on palladium, the “third-body” effect probably plays only a minor role at the other two noble metals.  相似文献   

3.
Pt? Cu alloy octahedral nanocrystals (NCs) have been synthesized successfully by using N,N‐dimethylformamide as both the solvent and the reducing agent in the presence of cetyltrimethylammonium chloride. Cu underpotential deposition (UPD) is found to play a key role in the formation of the Pt? Cu alloy NCs. The composition in the Pt? Cu alloy can be tuned by adjusting the ratio of metal precursors in solution. However, the Cu content in the Pt? Cu alloy NCs cannot exceed 50 %. Due to the fact that Cu precursor cannot be reduced to metallic copper and the Cu content cannot exceed 50 %, we achieved the formation of the Pt? Cu alloy by using Cu UPD on the Pt surface. In addition, the catalytic activities of Pt? Cu alloy NCs with different composition were investigated in electrocatalytic oxidation of formic acid. The results reveal that the catalytic performance is strongly dependent on Pt? Cu alloy composition. The sample of Pt50Cu50 exhibits excellent activity in electrocatalytic oxidation of formic acid.  相似文献   

4.
The influence of the underpotential deposition of Pb, Tl and Bi on the oxidation of ammonia and on the reduction and oxidation processes of hydroxylamine on platinum has been studied in alkaline solutions. Pronounced inhibition effects caused by underpotential metal adsorbates have been detected for either the oxidation of ammonia or the reduction of hydroxylamine. On the other hand, the same metal adsorbates markedly increase the electrocatalytic activity of the Pt electrode for hydroxylamine oxidation. The observed negative and positive catalytic effects have been interpreted in terms of the electronic and adsorption properties of the Pt substrate, which are strongly modified by the underpotential metal adsorbates.  相似文献   

5.
The oxidation of formic acid at Pt electrodes in the presence of underpotentially deposited (UPD) Pb has been studied using an electrochemical quartz crystal microbalance (EQCM). Although the current associated with the UPD process is largely obscured by current from the oxidation of formic acid, the mass response is dominated by the changes in UPD coverage. Thus examination of mass responses accompanying cyclic voltammetric and constant-potential experiments reveals both variations in UPD coverage and the manner in which the underpotential deposits are affected by adsorbates derived from formic acid. At low concentrations of formic acid there is some suppression of the underpotential deposit and data suggest that strongly adsorbing intermediates form most rapidly in the hydrogen adsorption region of potential. Mass responses also indicate slight increases in UPD coverage upon removal of strongly adsorbed species by oxidation. Oxidation of high concentrations (0.1 M) of formic acid induces a significant positive shift in the potential for removal of the UPD deposit on the positive scan, and on the subsequent negative scan the rapid reaction between the oxidized Pt surface and formic acid removes the oxide at a higher potential than normal and consequently allows the UPD process to begin at a more positive potential. Adsorption of Pb2+ at oxidized Pt surfaces is also inhibited by the presence of formic acid.  相似文献   

6.
The catalytic activity of platinum surfaces towards methanol electrooxidation can be modified by the deposition of a second metal using different methodologies. There is little information about the catalytic performance of polycrystalline platinum modified by silver and mercury adatoms using spontaneous and electrochemical deposition methods. Cyclic voltammetrics have been performed to compare the current vs potential profiles of modified platinum surfaces in acid solution at room temperature. The inhibition of the hydrogen adatom voltammetric profile by foreign metal adatoms on platinum was used to calculate the degree of surface coverage by the metal. Poisoning effects were checked by anodic stripping experiments of methanol residues on the modified platinum surfaces at adsorption potentials in the hydrogen electrosorption region using a micro flux cell. Methanol solution oxidation was also evaluated at slow scan rates of up to 0.8 vs reversible hydrogen electrode (RHE) on the platinum-modified surfaces. The comparison between the amounts of carbon-monoxide-type residues and the solution oxidation of methanol was analysed to check for their utility as catalytic surfaces for direct methanol fuel cells. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

7.
Palladium-gold particles with varied composition were prepared by Pd electrochemical deposition on Au nanoparticles immobilized on model carbon support. Pd-Au/C catalysts were characterized ex situ by transmission electron microscopy, energy dispersive X-ray analysis and X-ray photoelectron spectroscopy, and in situ, by underpotential deposition of hydrogen and copper adatoms, and CO stripping. Hydrogen oxidation reaction on pristine and CO-poisoned Pd-Au/C particles was studied using rotating disk electrode (RDE) technique. It was found that the decrease of the effective Pd overlayer thickness below ca. two monolayers resulted in a two-fold increase of the exchange current density of the hydrogen oxidation reaction and in significant increase of CO tolerance.  相似文献   

8.
以半导体材料类石墨氮化碳纳米片(g-C3N4纳米片)为载体,通过微波-多元醇法构筑了Pt/g-C3N4纳米片催化剂. 通过TEM、XRD、XPS、紫外-可见吸收光谱等方法对Pt/g-C3N4纳米片催化剂的粒径尺寸、组成、结构、光学等性质进行分析. 通过对比可见光照和暗室条件下的甲酸电氧化活性,Pt/g-C3N4纳米片催化剂在可见光照射下展现出良好的催化性能. 该性能的提高一方面可能是由于g-C3N4纳米片在可见光照射下加速了电子从Pt转移给g-C3N4纳米片,Pt处于“电子匮乏”状态,可削弱CO与Pt之间的化学键能,减弱CO在Pt表面的吸附能力,促进了CO的氧化,提高了催化剂抗中毒能力;另一方面,g-C3N4纳米片在光照条件下分离出的空穴可有效氧化甲酸分子,提高甲酸氧化活性. 因此,可见光条件下可有效提高Pt/g-C3N4纳米片催化剂甲酸催化氧化活性,这为直接甲酸燃料电池的发展提供了新思路.  相似文献   

9.
采用欠电位沉积法,以铅电极作基体制备了负载型Pt-Sn双金属催化电极。应用循环伏安法和电位阶跃法研究了各种因素对该电极的催化活性和稳定性的影响,并应用XPS和AES技术分析了该电极的表面物性。该电极对酸性介质中的甲醇氧化反应显示出高于Pt-Sn/Pt电极的催化活性和稳定性。  相似文献   

10.
One problem associated with using bare solid metal electrodes, such as gold and platinum, in stripping analysis to determine heavy metal ions such as lead and copper ions in dilute solutions is that underpotential deposition (UPD) gives multiple stripping peaks in the analysis of mixtures. These peaks are often overlapped and cannot be conveniently used for analytical purposes. Bifunctional alkylthiols, such as 3-mercaptopropionic acid, with an ionizable group on the other terminal end of the thiol can form self-assembled monolayers (SAMs) on the surface of the gold electrode. It is shown that such an SAM-modified gold electrode minimizes the UPD effects for the stripping analysis of lead and copper. The anodic peak potential shifts and the peak shape changes, indicating that the SAM changes the deposition and stripping steps of these heavy metal ions. Thus, the sensitivity levels for both single species and mixtures can be significantly improved for the conventional solid electrodes. The mechanism of the deposition reaction at the SAM-modified gold electrodes is discussed. Received: 29 May 1997 / Accepted: 24 June 1997  相似文献   

11.
UPD铅对甲酸在铂上电氧化的助催化功用的研究   总被引:1,自引:0,他引:1  
应用电位扫描和电位-时间程序技术研究了在UPD铅不存在和存在的情况下,各种因素对甲酸在铂上和酸介质中电催化氧化的影响。结果表明,在甲酸的CV图上,阳极方向的第一氧化峰和阴极方向的氧化峰是由于同一的弱吸附中间物的氧化,而阳极方向的第二和第三氧化峰是由于两种不同的强吸附中间物的氧化。cps值的测定和电极表面宏观结构的影响等实验表明,这些吸附中间物在电极表面上都呈线性吸附,它们分别可能是单键吸附的HCOOad双键吸附的COad和叁键吸附的COHad。据此可以推论,UPD铅的主要功用是一种电子效应。  相似文献   

12.
Density functional theory calculations were employed to investigate the electronic properties of a Pt(111) surface modified with foreign atoms. The effects of alloying platinum with molybdenum, palladium, and tin changed the interaction between adsorbate orbital and metal d band. This letter discusses the interaction between metal atoms and adsorbate and its influence on electronic structure rearrangement of the species—changes that must be taken into account to explain the behavior of catalytic systems and sensors. Mo/Pt(111) and Sn/Pt(111) exhibited lower susceptibility to poisoning by CO, compared with pure platinum. Both Pt-based materials are expected to find utility in electrodes for alcohol and hydrogen oxidation.  相似文献   

13.
朱文  杨君友  周东祥  樊希安  段兴凯 《化学学报》2007,65(20):2273-2278
研究了碲在金衬底上的不可逆吸附行为特征及其对碲原子欠电位沉积行为的影响. 同时也探讨了碲原子于金衬底上的欠电位沉积机制. 结果显示在开路条件下碲原子在金衬底表面具有不可逆的吸附行为, 证实了在金的双电层范围内很难将这种碲的吸附物移走. 为了完全移走碲的吸附物, 需要采用特定的电化学清洗程序. 发现碲的吸附物移走发生在电位循环至金的氧化区域, 且在该区域这种碲的吸附物移走与金的表面氧化同时发生. 扫描速率分析结果证实碲欠电位沉积在金表面符合Sanchez-Maestre模型的三个标准, 说明碲原子于金衬底上欠电位沉积符合二维形核和生长机制.  相似文献   

14.
The platinum-palladium/Nafion metal—polymer nanocomposites were synthesized by chemical reduction of metal ions in water—organic reverse microemulsion solutions. The catalytic activity of the synthesized polymer composites with bimetallic Pt—Pd nanoparticles was estimated in the oxidation of hydrogen and formic acid.  相似文献   

15.
The possibility of synergic effects of some metals on the catalytic activity of silver led us to study the way to perform controlled deposition on silver. In fact, many metals of technological interest such as Co, Ni, and Fe cannot be deposited at underpotential on silver, and any attempt to control the deposition at overpotential, even at potentials slightly negative of the Nernst value, did not allow an effective control. However, due to the favorable energy gain involved in the formation of the corresponding sulfides, these metals can be deposited at underpotential on sulfur covered silver. The deposition is surface limited and the successive electrodesorption of sulfur leaves confined clusters of metals. The method can also be used to obtain metal clusters of different size. In fact, the alternate underpotential deposition of elements that form a compound is the basis of the electrochemical atomic layer epitaxy (ECALE), and the reiteration of the basic cycle allows us to obtain sulfide deposits whose thickness increases with the number of cycles. Therefore, the successive selective desorption of sulfur leaves increasing amounts of metals.  相似文献   

16.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

17.
The electrochemistry of formic acid, carbon monoxide and methanol have been investigated and evaluated in combination with hydrazine. Hydrazine was observed to display the anticipated steady‐state oxidation waves at platinum (Pt) microelectrodes by cyclic voltammetry, and upon introduction of carbon monoxide (CO) gas, the Pt surface was fully passivated (prior to CO oxidation). However, the two individual responses of hydrazine and formic acid (HCOOH) are to be additive when combined in solution. No detrimental effects were observed upon the hydrazine voltammetry, even in the presence of excess formic acid, despite formic acid clearly displaying characteristic self‐poisoning tendencies (primarily due to the formation of CO) in its own voltammetry. Effects intermediate to those of CO and formic acid were observed when methanol was present. Currents were essentially additive at low methanol content, but hydrazine oxidation current decreased by about 40 % when an 100‐fold excess of methanol was present, corresponding to poisoning by methanol dehydrogenation intermediates. These results are discussed with relevance to mixed fuels for more flexible or powerful fuel cells, and the possible formation of a random microelectrode array (templated by strongly adsorbed poison) on the microelectrode surface.  相似文献   

18.
The influence of ruthenium and osmium spontaneous deposition on polycrystalline platinum in sulfuric acid was studied by conventional electrochemical techniques. The inhibition of the hydrogen adatom voltammetric profile by the foreign adatoms was used to calculate the degree of surface coverage of ruthenium, osmium, and a mixture of both metal ions from solutions of different composition. Methanol adsorption and oxidation were compared on bare platinum, platinum/ruthenium, platinum/osmium, and ternary compounds, considering the efficiency of methanol oxidation per hydrogen adatom displaced by the foreign metal on platinum.  相似文献   

19.
Novel nanostructured catalysts with highly dispersed cobalt have been synthesized by the pyrolysis of metal phenanthroline complexes. Materials with significantly different properties were obtained by simply tuning the metal/ligand ratio. The catalytic potential of this class of compounds is shown by the first example of the dehydrogenation of formic acid under the catalysis of atomically dispersed cobalt. From TEM, XPS, and XRD characterization, KSCN poisoning, and acid leaching, the formation of CoNx species as the active site seems key to the success of this reaction. Excellent stability and recyclability make this new catalyst also attractive for other applications.  相似文献   

20.
In this communication, we study the electrocatalytic formic acid oxidation process on an epitaxially grown Pd monolayer on a Pt(100) single crystal in perchloric acid. The formic acid oxidation activity on this PdMLPt(100) electrode in perchloric acid is significantly enhanced compared to the same electrode in sulfuric acid and compared to unmodified Pt(100), with a low onset potential of around 0.14 VRHE. The absence of hysteresis between the positive and negative scan during formic acid oxidation indicates the remarkable resistance to CO poisoning of the Pd monolayer surface. Most importantly, we report, for the first time, a mass-transport-limited formic acid oxidation rate on the PdMLPt(100) rotating electrode in perchlorate acid, setting a catalytic benchmark for future electrocatalysts for formic acid oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号