首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low‐band gap selenophene‐based polymers were synthesized. Their optoelectronic and photovoltaic properties and space‐charge limited currents were compared with those of the related thiophene‐based polymers. The band gaps of the Se‐based derivatives were approximately 0.05–0.12 eV lower than those of their thiophene counterparts. Organic photovoltaic (OPV) devices based on the blends of these polymers and 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐C71 (PC71BM) were fabricated, and the maximum power conversion efficiency of the OPV device based on PSPSBT and PC71BM was 3.1%—with a short‐circuit current density (Jsc) of 9.3 mA cm?2, an open‐circuit voltage (Voc) of 0.79 V, and a fill factor of 0.42—under AM 1.5 G illumination (100 mW cm?2). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4550–4557  相似文献   

2.
Three new polymers poly(3,4′′′‐didodecyl) hexaselenophene) (P6S), poly(5,5′‐bis(4,4′‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (HHP6S), and poly(5,5′‐bis(3′,4‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (TTP6S) that have the same selenophene‐based polymer backbone but different side chain patterns were designed and synthesized. The weight‐averaged molecular weights (Mw) of P6S, HHP6S, and TTP6S were found to be 19,100, 24,100, and 19,700 with polydispersity indices of 2.77, 1.48, and 1.41, respectively. The UV–visible absorption maxima of P6S, HHP6S, and TTP6S are at 524, 489, and 513 nm, respectively, in solution and at 569, 517, and 606 nm, respectively, in the film state. The polymers P6S, HHP6S, and TTP6S exhibit low band gaps of 1.74, 1.95, and 1.58 eV, respectively. The field‐effect mobilities of P6S, HHP6S, and TTP6S were measured to be 1.3 × 10?4, 3.9 × 10?6, and 3.2 × 10?4 cm2 V?1 s?1, respectively. A photovoltaic device with a TTP6S/[6,6]‐phenyl C71‐butyric acid methyl ester (1:3, w/w) blend film active layer was found to exhibit an open circuit voltage (VOC) of 0.71 V, a short circuit current (JSC) of 5.72 mA cm?2, a fill factor of 0.41, and a power conversion efficiency (PCE) of 1.67% under AM 1.5 G (100 mW cm?2) illumination. TTP6S has the most planar backbone of the tested polymers, which results in strong π–π interchain interactions and strong aggregation, leading to broad absorption, high mobility, a low band gap, and the highest PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The novel trans‐stereo‐regular silylene–thiophene derivatives ( 4 , 5 ) with perfect consecutive silylene–arylene–silylene–vinylene linkage were synthesized via silylative coupling polycondensation of 2,5‐bis(vinyldimethylsilyl)thiophene ( 2 ) or 5,5′‐bis(vinyldimethylsilyl)‐2,2′‐bithiophene ( 3 ) catalyzed by ruthenium‐hydride complex [RuHCl(CO)(PCy3)2] ( 1 ). Their spectroscopic, absorption, and luminescence properties were characterized and compared with those of model compounds containing thiophene or bithiophene chromophores. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 127–137, 2008  相似文献   

4.
We report the synthesis of low bandgap polymers with a difluoroquinoxaline unit by Stille polymerization for use in polymer solar cells (PSCs). A new series of copolymers with 2,3‐didodecyl‐6,7‐difluoro quinoxaline as the electron‐deficient unit and alkyloxybenzo[1,2‐b:4,5‐b′]dithiophene and thiophene as the electron‐rich unit were synthesized. The photovoltaic properties of the devices based on the synthesized polymers revealed that the fluorine atoms at the quinoxaline units aid in decreasing the highest occupied molecular orbital (HOMO) energy levels; this in turn increased the open circuit voltage of the devices. The polymers with long alkyl chains exhibited good solubility that increased their molecular weight, but the power conversion efficiency was low. Efficient polymer solar cells were fabricated by blending the synthesized copolymers with PC71BM, and the PCE increased up to 5.11% under 100 mW cm−2 AM 1.5 illumination. These results demonstrate that the importance of having a control polymer to be synthesized and characterized side by side with the fluorine analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1489–1497  相似文献   

5.
Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field‐effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field‐effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2691–2699  相似文献   

6.
A pentacyclic benzodipyrrolothiophene ( BDPT ) unit, in which two outer thiophene rings are covalently fastened with the central phenylene ring by nitrogen bridges, was synthesized. The two pyrrole units embedded in BDPT were constructed by using one‐pot palladium‐catalyzed amination. The coplanar stannylated Sn‐BDPT building block was copolymerized with electron‐deficient thieno[3,4‐c]pyrrole‐4,6‐dione ( TPD ), benzothiadiazole ( BT ), and dithienyl‐diketopyrrolopyrrole ( DPP ) acceptors by Stille polymerization. The bridging nitrogen atoms make the BDPT motif highly electron‐abundant and structurally coplanar, which allows for tailoring the optical and electronic properties of the resultant polymers. Strong photoinduced charge‐transfer with significant band‐broadening in the solid state and relatively higher oxidation potential are characteristic of the BDPT‐based polymers. Poly(benzodipyrrolothiophene‐alt‐benzothiadiazole) ( PBDPTBT ) achieved the highest field‐effect hole mobility of up to 0.02 cm2 V?1 s?1. The photovoltaic device using the PBDPTBT /PC71BM blend (1:3, w/w) exhibited a Voc of 0.6 V, a Jsc of 10.34 mA cm?2, and a FF of 50 %, leading to a decent PCE of 3.08 %. Encouragingly, the device incorporating poly(benzodipyrrolothiophene‐alt‐thienopyrrolodione) ( PBDPTTPD )/PC71BM (1:3, w/w) composite delivered a highest PCE of 3.72 %. The enhanced performance arises from the lower‐lying HOMO value of PBDPTTPD to yield a higher Voc of 0.72 V.  相似文献   

7.
A new accepter unit, dimethyl‐2H‐benzimidazole, was prepared and used for the synthesis of the conjugated polymers containing electron donor–acceptor pair for organic photovoltaics (OPVs). Dimethyl‐2H‐benzimidazole unit was designed to substitute the BT unit of poly(N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)) (PCDTBT). A series of new semiconducting polymers with 2,2‐dimethyl‐2H‐benzimidazole, 9‐heptadecanyl‐9H‐carbazole, and thiophene (or bithiophene) units was synthesized using Stille polymerization to generate PCDTMBIs (or PCBBTMBIs). In dimethyl‐2H‐benzimidazole, the sulfur at 2‐position of BT unit was replaced with dialkyl substituted carbon, while keeping the 1,2‐quinoid form, to improve the solubility of the polymers. The absorption spectra of PCDTMBIs with thiophene units exhibit two maximum peaks at about 430 and 613–645 nm in solution. The solutions of PCBBTMBIs show two absorption peaks at about 445–456 and 630–645 nm which is red‐shifted about 20 nm when compared with PCDTMBIs caused by the introduction of bithiophene units. In most efficient polymer PCBBTMBI3, the device annealed at 100 °C for 10 min demonstrated a VOC value of 0.60 V, a JSC value of 4.31 mA/cm2, and a FF of 0.35, leading to the power conversion efficiency (PCE) of 0.91%, under white light illumination (AM 1.5 G and 100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Two β‐cyano‐thiophenevinylene‐based polymers containing cyclopentadithiophene ( CPDT‐CN ) and dithienosilole ( DTS‐CN ) units were synthesized via Stille coupling reaction with Pd(PPh3)4 as a catalyst. The effects of the bridged atoms (C and Si) and cyano‐vinylene groups on their thermal, optical, electrochemical, charge transporting, and photovoltaic properties were investigated. Both polymers possessed the highest occupied molecular orbital (HOMO) levels of about ?5.30 eV and the lowest unoccupied molecular orbital (LUMO) levels of about ?3.60 eV, and covered broad absorption ranges with narrow optical band gaps (ca. 1.6 eV). The bulk heterojunction polymer solar cell (PSC) devices containing an active layer of electron‐donor polymers ( CPDT‐CN and DTS‐CN ) blended with an electron‐acceptor, that is, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM), in different weight ratios were explored under 100 mW/cm2 of AM 1.5 white‐light illumination. The PSC device based on DTS‐CN: PC71BM (1:2 w/w) exhibited a best power conversion efficiency (PCE) value of 2.25% with Voc = 0.74 V, Jsc = 8.39 mA/cm2, and FF = 0.36. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

9.
The synthesis of conjugated polymers 1 – 5 functionalized with 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione in the backbone is reported and their use in the construction of organic solar cells is demonstrated. Increasing the molar ratio of 2,7‐dibromo‐3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione, relative to 4,4′‐dihexyl‐5,5′‐dibromo‐2,2′‐bithiophene, in the copolymer synthesis significantly lowers the solubility of these polymers. The incorporation of highly conjugated 3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione unit into the polymer backbone has been confirmed by UV–vis absorption. The observation of decreasing quantum yield for the emission in the order of 1 , 2 , 3 is consistent with copolymers with different comonomer content. The power conversion efficiencies of solar cells using blends of these polymers with PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) were determined to be 0.11% for polymer 1 , 0.33% for 2 , and 0.26% for 3 , respectively. Under identical white light illumination, the power conversion efficiency of the device based on polymer 2 /PCBM as the active layer was three times higher compared to that of device based on polymer 1 /PCBM. Owing to the limited solubility and poor film‐forming ability of polymer 3 , the power conversion efficiency of solar cell based on 3 /PCBM blend is lower than that of 2 /PCBM blend, but is still larger than that of 1 /PCBM blend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2680–2688, 2008  相似文献   

10.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

11.
Four ethynylene‐containing donor‐acceptor alternating conjugated polymers P1 – P4 with 2,5‐bis(dodecyloxy) substituted phenylene or carbazole as the donor unit and benzothiadiazole (BTZ) as the acceptor unit were synthesized and used as donor polymers in bulk heterojunction polymer solar cells. The optical, electrochemical, and photovoltaic properties of these four polymers with the ethylene unit located at different positions of the polymer chains were systematically investigated. Our results demonstrated that absorption spectra and the HOMO and LUMO energy levels of polymers could be tuned by varying the position of the ethynylene unit in the polymer chains. Photovoltaic devices based on polymer/PC71BM blend films spin coated from chloroform and dichlorobenzene solutions were investigated. For all four polymers, open circuit voltages (Voc) higher than 0.8 V were obtained. P4 , with ethynylene unit between BTZ and thiophene, shows the best performance among these four polymers, with a Voc of 0.94 V, a Jsc of 4.2 mA/cm2, an FF of 0.40, and a PCE of 1.6%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

13.
A novel electron‐accepting unit cyclopenta[2,1‐b:3,4‐c′]dithiophene‐4‐one (CPDTO‐c′), which is an isomer of CPDTO‐b′ was developed. CPDTO‐c′ can be incorporated into the D–A backbone through 5, 7 positions. The 2 position of CPDTO‐c′ can be easily functionalized with an electron‐withdrawing chain. By copolymerizing CPDTO‐c′ with four different donor units: benzo[1,2‐b:4,5‐b′]dithiophene (BDT), dithieno[3,2‐b:2′,3′‐d]silole (DTS), carbazole, and fluorene, four new conjugated copolymers P1 – P4 were obtained. All these polymers have good solubility and low‐lying HOMO energy levels (−5.41 ∼ −5.92 eV). Among them, P1 and P2 exhibit broad absorption and narrow optical bandgaps of 1.91 and 1.72 eV, respectively. Solar cells based on P1 /PC71BM afforded a PCE up to 2.72% and a high Voc up to ∼0.9 V.  相似文献   

14.
Four new D—A type copolymers with 2D‐conjugated side‐chain identified PfToBT, PbToBT, PfTDPP and PbTDPP, containing two acceptors 4,7‐dithien‐2‐yl‐benzo[c][1,2,5]thiadiazole (DTBT), and diketopyrrolopyrrole (DPP) linked by thiophene donors, are obtained using Pd‐catalyzed Stille‐coupling reaction. These polymers show a broad visible‐near‐infrared absorption band (Eg = 1.79–1.66 eV) and possess a relatively low‐lying HOMO level at ?5.34 to ?5.12 eV. All the polymer:PC70BM blend films showed edge‐on structure and have similar dπ‐spacing values. According to the structure of conjugated side‐chain, the vertical distributions of polymer chains and PC70BM within the BHJ (bulk heterojunction) were different. When DPP used as an acceptor, conjugated side chains of the polymer coexisted with PC70BM in same position. The BHJ film prepared from PfToBT, PbToBT had a discontinuous network between polymer and PC70BM, whereas films from PfTDPP and PbTDPP formed continuous and evenly distributed network between them. This optimized vertical morphology promotes hole transport along respective pathways of polymers and fullerenes in the vertical direction, leading to high JSC. PbTDPP shows PCE up to 2.9% (Jsc of 9.4 mA/cm2, Voc of 0.68 V, and FF of 0.44). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2746–2759  相似文献   

15.
A distannylated electron‐deficient bithiophene imide (BTI‐Tin) monomer was synthesized and polymerized with imide‐functionalized co‐units to afford homopolymer PBTI and copolymer P(BTI‐BTI2), both featuring an acceptor–acceptor backbone with high molecular weight. Both polymers exhibited excellent unipolar n‐type character in transistors with electron mobility up to 2.60 cm2 V?1 s?1. When applied as acceptor materials in all‐polymer solar cells, PBTI and P(BTI‐BTI2) achieved high power‐conversion efficiency (PCE) of 6.67 % and 8.61 %, respectively. The PCE (6.67 %) of polymer PBTI, synthesized from the distannylated monomer, is much higher than that (0.14 %) of the same polymer PBTI*, synthesized from typical dibrominated monomer. The 8.61 % PCE of copolymer P(BTI‐BTI2) is also higher than those (<1 %) of homopolymers synthesized from dibrominated monomers. The results demonstrate the success of BTI‐Tin for accessing n‐type polymers with greatly improved device performance.  相似文献   

16.
Pentacyclic diindeno[1,2‐b:2′,1′‐d]thiophene ( DIDT ) unit is a rigid and coplanar conjugated molecule. To the best of our knowledge, this attractive molecule has never been incorporated into a polymer and thus its application in polymer solar cells has never been explored. For the first time, we report the detailed synthesis of the tetra‐alkylated DIDT molecule leading to its dibromo‐ and diboronic ester derivatives, which are the key monomers for preparation of DIDT ‐based polymers. Two donor–acceptor alternating polymers, poly(diindenothiophene‐alt‐benzothiadiazole) PDIDTBT and poly(diindenothiophene‐alt‐dithienylbenzothiadiazole) PDIDTDTBT , were synthesized by using Suzuki polymerization. Copolymer PTDIDTTBT was also prepared by using Stille polymerization. Although PTDIDTTBT is prepared through a manner of random polymerization, we found that the different reactivities of the dibromo‐monomers lead to the resulting polymer having a block copolymer arrangement. With the higher structural regularity, PTDIDTTBT , symbolized as (thiophene‐alt‐ DIDT )0.5block‐(thiophene‐alt‐BT)0.5, shows the higher degree of crystallization, stronger π–π stacking, and broader absorption spectrum in the solid state, as compared to its alternating PDIDTDTBT analogue. Bulk heterojunction photovoltaic cells based on ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration were fabricated and characterized. PDIDTDTBT /PC71BM and PTDIDTTBT /PC71BM systems exhibited promising power‐conversion efficiencies (PCEs) of 1.65 % and 2.00 %, respectively. Owing to the complementary absorption spectra, as well as the compatible structures of PDIDTDTBT and PTDIDTTBT , the PCE of the device based on the ternary blend PDIDTDTBT / PTDIDTTBT /PC71BM was further improved to 2.40 %.  相似文献   

17.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A pyromellitic diimide building block, 2,6‐bis(2‐decyltetradecyl)?4,8‐di(thiophen‐2‐yl)pyrrolo[3,4‐f]isoindole‐1,3,5,7(2H,6H)‐tetraone ( 4 ), is synthesized. Based on this building block and other electron‐rich units such as 2,2′‐bithiophene, thieno[3,2‐b]thiophene and 4,8‐bis(dodecyloxy)benzo[1,2‐b:4,5‐b′]dithiophene, three conjugated polymers P1 , P2 , and P3 are prepared in good yield via Stille coupling polymerization. These new copolymers have good solubility in common organic solvents and exhibit good thermal stability. The optical, electrochemical, and thermal properties of these polymers P1–P3 are carefully investigated, and their applications in solution‐processed organic field‐effect transistors are also studied. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2454–2464  相似文献   

19.
In this study, two new benzotriazole (BTz) and dithienothiophene (DTT) containing conjugated polymers were synthesized. After successful characterizations of the monomers by proton‐nuclear magnetic resonance (1H NMR) and carbon‐NMR (13C NMR) techniques, poly(4‐(dithieno[3, 2‐b:2′,3′‐d]thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐2H‐benzo[d][1,2,3] triazole) P1 and poly(4‐(5‐(dithieno[3,2‐b:2′,3′‐d]thiophen‐2‐yl)thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐7‐(thiophen‐2‐yl)‐2H‐benzo[d][1,2,3]triazole) P2 were synthesized via a typical Stille coupling. Electrochemical and spectroelectrochemical studies showed that both polymers can be multipurpose materials and used in electrochromic and photovoltaic applications. Reported study indicated that incorporation of DTT into the structure leads to fast switching times compared with BTz‐based polymers and competent percentage transmittance in the near‐infrared region. Multichromism is important in the context of low‐cost flexible display device technology and both polymers are ambipolar and processable as well as multichromic. Throughout the preliminary photovoltaic studies, the best performances of photovoltaic devices were found as Voc = 0.49 V, Jsc = 0.83 mA/cm2, fill factor (FF) = 34.4%, and power conversion efficiency (PCE) = 0.14% for P1 , and as Voc = 0.35 V, Jsc = 1.57 mA/cm2, FF = 38.2%, and PCE = 0.21% for P2 . © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
We have synthesized two cyclopentadithiophene (CDT)‐based low bandgap copolymers, poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(benzo[c][1,2,5]selenadiazole‐4,7‐diyl)] (PCBSe) and poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(4,7‐dithiophen‐2‐yl‐benzo[c][1,2,5]selenadiazole‐5,5′‐diyl)] (PCT2BSe), for use in photovoltaic applications. Through the internal charge transfer interaction between the electron‐donating CDT unit and the electron‐accepting benzoselenadiazole, we realized exceedingly low bandgap polymers with bandgaps of 1.37–1.46 eV. The UV–vis absorption maxima of PCT2BSe were subjected to larger hypsochromic shifts than those of PCBSe, because of the distorted electron donor–acceptor (D–A) structures of the PCT2BSe backbone. These results were supported by the calculations of the D–A complex using the ab initio Hartree‐Fock method with a split‐valence 6‐31G* basis set. However, PCT2BSe exhibited a better molar absorption coefficient in the visible region, which can lead to more efficient absorption of sunlight. As a result, PCT2BSe blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) exhibited a better photovoltaic performance than PCBSe because of the larger spectral overlap integral with respect to the solar spectrum. Furthermore, when the polymers were blended with PC71BM, PCT2BSe showed the best performance, with an open circuit voltage of 0.55 V, a short‐circuit current of 6.63 mA/cm2, and a power conversion efficiency of 1.34% under air mass 1.5 global illumination conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1423–1432, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号