首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mixtures of the dimethyl esters of adipic acid and 2,3:4,5‐di‐O‐methylene‐galactaric acid (Galx) were made to react in the melt with either 1,6‐hexanediol or 1,12‐dodecanediol to produce linear polycyclic copolyesters with aldarate unit contents varying from 10 up to 90 mole %. The copolyesters had weight–average molecular weights in the ~35,000–45,000 g mol?1 range and a random microstructure, and were thermally stable up to nearly 300 °C. They displayed Tg in the ‐50 to ‐7 °C range with values largely increasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 20 and 90 °C but only those made from 1,12‐dodecanediol were able to crystallize from the melt at a crystallization rate that decreased as the contents in the two comonomers approached each other. Copolyesters containing minor amounts of galactarate units adopted the crystal structure characteristic of aliphatic polyesters but a new crystal polymorph was formed when the cyclic sugar units became the majority. Stress–strain parameters were sensitively affected by composition of the copolyesters with the mechanical behavior changing from flexible/ductile to stiff/brittle with the replacement of adipate units by the galactarate units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
The synthesis, characterization, and some properties of new copolyesters analogous to poly(butylene terephthalate) (PBT), based on L ‐arabinaric and galactaric acids, are described. These copolyesters were obtained by polycondensation reaction in the melt of mixtures of methyl 2,3,4‐tri‐O‐methyl‐L ‐arabinarate or methyl 2,3,4,5‐tetra‐O‐methyl‐galactarate and dimethyl terephthalate with 1,4‐butanediol. Their weight‐average molecular weights ranged between 10,000 and 34,000, with polydispersities ranging from 1.4 to 2.2. The composition of all the copolymers was analyzed by NMR, and was found to have a statistical microstructure. All these copolyesters were thermally stable, with degradation temperatures well above 300 °C. The melting temperature and crystallinity decreased in both series, and the glass transition temperature increased and decreased respectively, for the PBTGa and PBTAr series with increasing amounts of aldaric units in the copolyester chain. Only PBT‐derived copolyesters containing a maximum of 30% aldaric units showed discrete scattering characteristic of crystalline material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1168–1177, 2009  相似文献   

3.
Cyclic oligomer fractions of ethylene terephthalate c(ET)n and 1,4‐cyclohexylenedimethylene terephthalate c(CT)n were obtained by cyclodepolymerization of their respective polyesters, the former containing around 80 mol % of trimer and the latter with around 70 mol % of trimer to pentamer. Mixtures of these fractions at selected compositions were subjected to ring opening copolymerization to give a series of poly(ethylene‐co‐cyclohexylenedimethylene terephthalate) copolyesters with ET/CT comonomer ratios ranging from 90/10 to 10/90. The copolyesters were characterized by GPC and NMR, and their thermal properties were evaluated by DSC and TGA. They had essentially the same composition as the feed from which they were produced and had an average‐weight molecular weights between 30,000 and 40,000 g/mol with polydispersities between 2 and 2.7. The distribution of the monomeric units in these copolyesters was essentially at random although it evolved to be a blocky microstructure as the contents in the two comonomers became more dissimilar. Their thermal behavior was the expected one for these types of copolyesters with crystallinity and heating stability decreasing with the content in CT units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5954–5966, 2009  相似文献   

4.
A series of poly(butylene terephthalate) copolyesters containing 5‐tert‐butyl isophthalate units up to 50 mol %, as well as the homopolyester entirely made of these units, were prepared by polycondensation from a melt. The microstructure of the copolymers was determined by NMR to be random for the whole range of compositions. The effect exerted by the 5‐tert‐butyl isophthalate units on thermal, tensile, and gas transport properties was evaluated. Both the melting temperature (Tm) and crystallinity were found to decrease steadily with copolymerization, whereas the glass‐transition temperature (Tg) increased and the polyesters became more brittle. Permeability and solubility slightly increased with the content in substituted isophthalic units, whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5‐tert‐butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters, suggesting that a different structure in the solid state is likely adopted in this case. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 92–100, 2005  相似文献   

5.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Polyarylates have previously been synthesized from acetate esters via esterolysis (loss of methyl acetate). This polycondensation can be extended to p‐substituted aromatic monomers for liquid crystal polyesters (LCPs). For AB‐type polymers, methyl p‐acetoxybenzoate and methyl 6‐acetoxynaphthoate were copolymerized to an LCP with reasonable molecular weights. Benzoate esters, methyl 4‐benzoyloxybenzoate (MBB) and methyl 6‐benzoyloxy‐2‐naphthoate (MBN), are also investigated. Several tin and antimony oxide catalysts were effective. The rate of esterolysis polymerization of MBB and MBN is slower than that of the corresponding acidolysis melt polymerization, but fast enough to give relatively high‐molecular‐weight polymers and similar thermal stability as commercial LCP prepared by acidolysis. Using these alternative benzoyloxy groups significantly reduced the color problem, because ketene loss cannot occur. Esterolysis melt polymerizations leading to AB/AABB‐type LCPs were performed using either dimethyl 2,6‐naphthalene dicarboxylate (DMND) or dimethyl terephthalate (DMT) with methyl 4‐acetoxybenzoate and phenylhydroquinone diacetate with tin and antimony catalysts. DMT‐based monomer compositions show much faster polymerization than DMND‐based compositions using antimony oxide catalyst. All these LCPs show a Tg in the 140–170 °C range as a result of the inclusion of the naphthalene and/or phenyl hydroquinone units in the polymer chain. Compositions completely off‐balanced on either side still lead to relatively high‐molecular‐weight copolyesters because either excess monomer can be removed during polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3586–3595, 2000  相似文献   

7.
Poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers, abbreviated as PETNI, were synthesized via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate and bis(2‐hydroxyethyl) 5‐nitroisophthalate mixtures with molar ratios of these two comonomers varying from 95/5 to 50/50. Polymerization reactions were carried out at temperatures between 200 and 270 °C in the presence of tetrabutyl titanate as a catalyst. The copolyesters were characterized by solution viscosity, GPC, FTIR, and NMR spectroscopy. They were found to be random copolymers and to have a comonomer composition in accordance with that used in the corresponding feed. The copolyesters became less crystalline and showed a steady decay in the melting temperature as the content in 5‐nitroisophthalic units increased. They all showed glass‐transition temperatures superior to that of PET with the maximum value at 85 °C being observed for the 50/50 composition. PETNI copolyesters appeared stable up to 300 °C and thermal degradation was found to occur in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1934–1942, 2000  相似文献   

8.
This article describes the synthesis and the properties of polyesters and copolyesters prepared from ethylene glycol, terephthalic acid, 4,4′ biphenyldicarboxylic acid (BDA), and 2,6-naphthlenedicarboxylic acid (NDA). The effect of incorporating varying levels of BDA and NDA on polyethylene terephthalate (PET) is described. Depending on the concentration, incorporation of BDA into PET leads to an improvement in glass transition temperature (Tg), strength, modulus, and barrier properties. Copolymers of PET containing up to about 50% BDA derived units are clear and have Tg's ranging from 85 to 105°C, making them suitable for applications where a high Tg along with clarity is important. Copolymers with higher BDA concentration are highly crystalline, with high rates of crystallization from the melt. Copolymerization of NDA with oligoethyleneterephthalate leads to copolymers that are generally amorphous. Crystallinity can be developed in copolymers with low concentration of NDA by thermal annealing. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3139–3146, 1999  相似文献   

9.
This study reports for the first time the use of bio‐based alternatives for PMMA as host matrix for luminescent solar concentrators (LSCs). Notably, two types of renewable polyesters were synthesized in varying molar ratios via a two‐step melt‐polycondensation reaction with dibutyl tin oxide as catalyst. The first is a homopolymer of diethyl 2,3:4,5‐di‐O‐methylene galactarate (GxMe) and isosorbide (IGPn), and the second is a random copolymer of GxMe with 1,3‐propanediol and dimethyl terephthalate (GTPn). The two polyesters were found to be optically transparent, totally amorphous with a Tg higher than 45 °C and temperature resistance comparable to PMMA. Lumogen Red (LR) and an aggregation‐induced emission (AIE) fluorophore, TPETPAFN, were utilized as fluorophores and the derived thin polymer films (25 μm) were found highly homogeneous, especially for those prepared from GTPn, possibly due to the presence of compatibilizing terephthalate units in the matrix composition and the higher molecular weight. The spectroscopic characterization and the optical efficiency determination (ηopt) evidenced LSCs performances similar or superior to those collected from LR/PMMA thin films. Noteworthy, ηopt of 7.7 % and 7.1 % were recorded for the GTPn‐based matrix containing LR and TPETPAFN, respectively, thus definitely supporting the bio‐based polyesters as renewable and highly fluorophore‐compatible matrices for high‐performance LSCs.  相似文献   

10.
This research aims to produce lignin‐based biodegradable polyesters with improved thermal quality. A series of aliphatic polyesters with lignin‐based aromatic side groups were synthesized by conventional melt‐polycondensation. Decent molecular weight (21–64 kg mol?1) was achieved for the polymerizations. The molecular structures and thermal and mechanical properties of the obtained polyesters were characterized. As a result, the obtained polyesters are all amorphous, and their glass‐transition temperature (Tg) depends on the size of the pendant aromatic group (31–51 °C). Furthermore, according to the TGA results, the thermal decomposition temperatures of the polyesters are all above 390 °C, which make them superior compared with commercial biodegradable polyesters like polylactic acid or polyhydroxyalkanoates. Finally, rheological characteristics and enzymatic degradation of the obtained polyesters were also measured. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2314–2323  相似文献   

11.
Three series of terephthalate polyesters (copolyesters and terpolyesters) containing 70, 80, and 90 mol % of ethylene glycol respectively, 1,4‐cyclohexanedimethanol (CHDM) and isosorbide in varying ratios, were synthesized by melt polycondensation. It was found that only ~75 mol % of the feeding isosorbide was incorporated in the resulting polyesters and that their content in diethylene glycol oscillated between 2 and 4 mol %. The polyesters had weight‐average molecular weights in the 25,000–33,000 g mol?1 range and polydispersities between 2 and 2.5. The combined 1H and 13C NMR analysis revealed that the microstructure of all these polyesters was at random. They showed good thermal stability with decomposition temperatures above 400 °C. Their glass‐transition temperatures were observed to increase with the content in cyclic diols, this effect being more pronounced when isosorbide was the replacing comonomer. Only the series containing 90 mol % of ethylene terephthalate units was able to crystallize upon cooling from the melt. Compared isothermal crystallizations revealed that isosorbide was more effective than CHDM in repressing the crystallizability of PET. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
The synthesis and characterization of new aromatic homo‐ and copolyesters based on l‐arabinitol and xylitol are described. These polymers were obtained by polycondensation reaction of the 2,3,4‐tri‐O‐methyl‐l‐arabinitol or 2,3,4‐tri‐O‐methyl‐xylitol, or their mixtures with ethylene glycol, with terephthaloyl chloride or isophthaloyl chloride in o‐dichlorobenzene or in the melt phase from the corresponding methyl phthalates. All the polymers were characterized by GPC, IR, and NMR. Their Mw values ranged between 11,500 and 46,500, with polydispersities from 1.5 to 2.3. They were found to be soluble in chloroform, but insoluble in water. In contrast with the homopolymers completely made with EG, they showed a significant hygroscopicity. DSC and TGA studies showed that the melting temperature of polyethylene terephthalate is depressed by the presence of pentitol units, whereas the thermal stability is kept above 350 °C. Only copolyesters containing 10% or less of pentitol units showed melting and produced X‐ray diffraction patterns characteristic of crystalline material. d‐Arabinitol‐based homopolyesters appeared to be more crystalline than those derived from xylitol and also presented a higher thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6394–6410, 2005  相似文献   

13.
A new series of thermotropic liquid‐crystalline (LC) polyesters were prepared from a diacyl chloride derivative of 4,4′‐(terephthaloyldioxy)‐di‐4‐phenylpropionic acid (PTP) and glycols with a different number of methylene groups (n) [HO(CH2)n OH, n = 6–10, 12] by high‐temperature solution polycondensation in diphenyl oxide. PTP6/10 and PTP6/hydroquinone (H) LC copolyesters were also prepared according to a similar procedure. The chemical structure, LC, phase‐transition behaviors, thermal stability, and solubility were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analysis, and a polarizing light microscope. The melting and isotropization temperatures decreased in a zigzag manner as the number of n increased. All of the polyesters formed a nematic phase with the exception of PTP8. The temperature ranges of the mesophase (ΔT) were much wider for the polyesters with an odd number of n's than those with an even number. ΔT increased markedly for the PTP6/10 and PTP6/H copolyesters. The in vitro degradations of the polymers were ascertained by enzymatic hydrolysis and alkaline hydrolysis. The model compound, PTP dihexylester, was synthesized and found to be degraded into terephthalic acid, 3‐(4‐hydroxyphenyl)propionic acid, and 1‐hexanol by Rhizopus delemar lipase, but PTPn homopolyesters and PTP6/10 and PTP6/H copolyesters were resistant to Rhizopus delemar hydrolysis. They were degradable in a sodium hydroxide buffer solution of pH 12 at 60 °C, depending on the number of n's and the copolymer composition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3043–3051, 2001  相似文献   

14.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

15.
The methanolytic degradation of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units was investigated. Random poly(ethylene terephthalate‐co‐nitroterephthalate) copolyesters (PETNT) containing 15 and 30 mol % nitrated units were prepared from ethylene glycol and a mixture of dimethyl terephthalate and dimethyl nitroterephthalate. A detailed study of the influence of the nitro group on the methanolytic degradation rate of the nitrated bis(2‐hydroxyethyl) nitroterephthalate (BHENT) model compound in comparison with the nonnitrated bis(2‐hydroxyethyl) terephthalate (BHET) model compound was carried out. The kinetics of the methanolysis of BHENT and BHET were evaluated with high‐performance liquid chromatography and 1H NMR spectroscopy. BHENT appeared to be much more reactive than BHET. The methanolytic degradation of PET and PETNT copolyesters at 80 °C was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the degradation increased with the content of nitrated units and occurred preferentially by cleavage of the ester groups placed at the meta position of the nitro group in the nitrated units. For both PET and PETNT copolyesters, an increase in crystallinity accompanied methanolysis. A surface degradation mechanism entailing solubilization of the fragmented polymer and consequent loss of mass was found to operate in the methanolysis of the copolyesters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2276–2285, 2002  相似文献   

16.
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009  相似文献   

17.
The synthesis, characterization, and some properties of new copolyesters of poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) based on L ‐arabinitol and xylitol are described. These copolyesters were obtained by polycondensation reaction in the melt of mixtures of 1,4‐butanediol or ethylene glycol and 2,3,4‐tri‐O‐benzyl‐L ‐arabinitol or 2,3,4‐tri‐O‐benzyl‐xylitol with dimethyl terephthalate. Their weight‐average molecular weights ranged between 7000 and 55,000, with polydispersities ranging from 1.4 to 4.7. Copolymers containing 1,4‐butanediol could be analyzed by NMR, and were found to have a statistical microstructure. All these copolyesters were thermally stable, with degradation temperatures well above 300 °C. With increasing amounts of alditol in the copolyester, the melting temperature and crystallinity decreased in both series, and the glass transition temperature increased for the PBT series and decreased for the PET series. Only PBT‐derived copolyesters containing a maximum of 10% alditol units showed discrete scattering characteristic of crystalline material. No substantial differences in either structure or properties were observed between the L ‐arabinitol and xylitol copolyester series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5167–5179, 2008  相似文献   

18.
Two series of new wholly aromatic thermotropic copolyesters containing the 2‐(α‐phenylisopropyl)hydroquinone (PIHQ) moiety have been synthesized and their basic properties such as glass transition temperature (Tg), melting temperature (Tm), thermal stability, crystallinity, and liquid crystallinity were studied by differential scanning calorimetry (DSC), thermogravimetry (TG), and wide‐angle X‐ray diffractometry (WAXD) and on a polarizing microscope. The first series was prepared from acetylated PIHQ, terephthalic acid (TPA), and 2,6‐naphthalenedicarboxylic acid (NDA), and the second series from acetylated PIHQ, TPA, and 1,1′‐biphenyl‐4,4′‐dicarboxylic acid (BDA). The Tg values (152–168°C) of the two series are not much different, although the values for the first series appear slightly higher. The Tm values (287–378°C) and the degree of crystallinity of the first series are appreciably greater than those of the second series. Such differences can be explained by the geometric structure of NDA and BDA moieties. All of the present polyesters are thermotropic and nematic. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 881–889, 1999  相似文献   

19.
Conventional melt transesterification successfully produced high‐molecular‐weight segmented copolyesters. A rigid, high‐Tg polyester precursor containing the cycloaliphatic monomers, 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol, and dimethyl‐1,4‐cyclohexane dicarboxylate allowed molecular weight control and hydroxyl difunctionality through monomer stoichiometric imbalance in the presence of a tin catalyst. Subsequent polymerization of a 4000 g/mol polyol with monomers comprising the low‐Tg block yielded high‐molecular‐weight polymers that exhibited enhanced mechanical properties compared to a nonsegmented copolyester controls and soft segment homopolymers. Reaction between the polyester polyol precursor and a primary or secondary alcohol at melt polymerization temperatures revealed reduced transesterification of the polyester hard segment because of enhanced steric hindrance adjacent to the ester linkages. Differential scanning calorimetry, dynamic mechanical analysis, and tensile testing of the copolyesters supported the formation of a segmented multiblock architecture. Further investigations with atomic force microscopy uncovered unique needle‐like, interconnected, microphase separated surface morphologies. Small‐angle X‐ray scattering confirmed the presence of microphase separation in the segmented copolyesters bulk morphology. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The melt crystallization behaviors and crystalline structures of poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate), and poly(ethylene‐co‐trimethylene terephthalate) (PETT) were investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X‐ray diffraction at various crystallization temperatures (Tcs). The PETT copolymers were synthesized via the polycondensation of terephthalate with ethylene glycol and trimethylene glycol (TG) in various compositions. The copolymers with 69.0 mol % or more TG or 31.0 mol % or less TG were crystallizable, but the other copolymers containing 34–56 mol % TG were amorphous. The DSC isothermal results revealed that the addition of a small amount of flexible TG (up to 21 mol %) to the PET structure slightly reduced the formation of three‐dimensional spherulites. A greater TG concentration (91–100%) in the copolyesters changed the crystal growth from two‐dimensional to three‐dimensional. The DSC heating scans after the completion of isothermal crystallization at various Tcs showed three melting endotherms for PET, PETT‐88, PETT‐84, and PETT‐79 and four melting endotherms for PETT‐9 and PETT. The presence of an additional melting endotherm could be attributed to the melting of thinner and imperfect copolyester crystallites. Analyses of the Lauritzen–Hoffman equation demonstrated that PETT‐88 had the highest values of the product of the lateral and folding surface free energies, and this suggested that the addition of small amounts of flexible trimethylene terephthalate segments to PET disturbed chain regularity, thus increasing molecular chain mobility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4255–4271, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号