首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The aim of this article is to present several computational algorithms for numerical solutions of a nonlinear finite difference system that represents a finite difference approximation of a class of fourth‐order elliptic boundary value problems. The numerical algorithms are based on the method of upper and lower solutions and its associated monotone iterations. Three linear monotone iterative schemes are given, and each iterative scheme yields two sequences, which converge monotonically from above and below, respectively, to a maximal solution and a minimal solution of the finite difference system. This monotone convergence property leads to upper and lower bounds of the solution in each iteration as well as an existence‐comparison theorem for the finite difference system. Sufficient conditions for the uniqueness of the solution and some techniques for the construction of upper and lower solutions are obtained, and numerical results for a two‐point boundary‐value problem with known analytical solution are given. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:347–368, 2001  相似文献   

2.
In this work we propose and analyze a fully discrete modified Crank–Nicolson finite element (CNFE) method with quadrature for solving semilinear second‐order hyperbolic initial‐boundary value problems. We prove optimal‐order convergence in both time and space for the quadrature‐modified CNFE scheme that does not require nonlinear algebraic solvers. Finally, we demonstrate numerically the order of convergence of our scheme for some test problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

3.
In this article, we consider a new technique that allows us to overcome the well‐known restriction of Godunov's theorem. According to Godunov's theorem, a second‐order explicit monotone scheme does not exist. The techniques in the construction of high‐resolution schemes with monotone properties near the discontinuities of the solution lie in choosing of one of two high‐resolution numerical solutions computed on different stencils. The criterion for choosing the final solution is proposed. Results of numerical tests that compare with the exact solution and with the numerical solution obtained by the first‐order monotone scheme are presented. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 262–276, 2001  相似文献   

4.
We propose, analyze, and implement fully discrete two‐time level Crank‐Nicolson methods with quadrature for solving second‐order hyperbolic initial boundary value problems. Our algorithms include a practical version of the ADI scheme of Fernandes and Fairweather [SIAM J Numer Anal 28 (1991), 1265–1281] and also generalize the methods and analyzes of Baker [SIAM J Numer Anal 13 (1976), 564–576] and Baker and Dougalis [SIAM J Numer Anal 13 (1976), 577–598]. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

5.
A new high‐resolution indecomposable quasi‐characteristics scheme with monotone properties based on pyramidal stencil is considered. This scheme is based on consideration of two high‐resolution numerical schemes approximated governing equations on the pyramidal stencil with different kinds of dispersion terms approximation. Two numerical solutions obtained by these schemes are analyzed, and the final solution is chosen according to the special criterion to provide the monotone properties in regions where discontinuities of solutions could arise. This technique allows to construct the high‐order monotone solutions and keeps both the monotone properties and the high‐order approximation in regions with discontinuities of solutions. The selection criterion has a local character suitable for parallel computation. Application of the proposed technique to the solution of the time‐dependent 2D two‐phase flows through the porous media with the essentially heterogeneous properties is considered, and some numerical results are presented. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 44–55, 2002  相似文献   

6.
This article is concerned with monotone iterative methods for numerical solutions of a coupled system of a first‐order partial differential equation and an ordinary differential equation which arises from fast‐igniting catalytic converters in automobile engineering. The monotone iterative scheme yields a straightforward marching process for the corresponding discrete system by the finite‐difference method, and it gives not only a computational algorithm for numerical solutions of the problem but also the existence and uniqueness of a finite‐difference solution. Particular attention is given to the “finite‐time” blow‐up property of the solution. In terms of minimal sequence of the monotone iterations, some necessary and sufficient conditions for the blow‐up solution are obtained. Also given is the convergence of the finite‐difference solution to the continuous solution as the mesh size tends to zero. Numerical results of the problem, including a case where the continuous solution is explicitly known, are presented and are compared with the known solution. Special attention is devoted to the computation of the blow‐up time and the critical value of a physical parameter which determines the global existence and the blow‐up property of the solution. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

7.
We propose and analyze a fully discrete Laplace modified alternating direction implicit quadrature Petrov–Galerkin (ADI‐QPG) method for solving parabolic initial‐boundary value problems on rectangular domains. We prove optimal order convergence results for a restricted class of the associated elliptic operator and demonstrate accuracy of our scheme with numerical experiments for some parabolic problems with variable coefficients.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

8.
This article deals with numerical solutions of a general class of coupled nonlinear elliptic equations. Using the method of upper and lower solutions, monotone sequences are constructed for difference schemes which approximate coupled systems of nonlinear elliptic equations. This monotone convergence leads to existence‐uniqueness theorems for solutions to problems with reaction functions of quasi‐monotone nondecreasing, quasi‐monotone nonincreasing and mixed quasi‐monotone types. A monotone domain decomposition algorithm which combines the monotone approach and an iterative domain decomposition method based on the Schwarz alternating, is proposed. An application to a reaction‐diffusion model in chemical engineering is given. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 621–640, 2012  相似文献   

9.
The finite element method has been well established for numerically solving parabolic partial differential equations (PDEs). Also it is well known that a too large time step should not be chosen in order to obtain a stable and accurate numerical solution. In this article, accuracy analysis shows that a too small time step should not be chosen either for some time‐stepping schemes. Otherwise, the accuracy of the numerical solution cannot be improved or can even be worsened in some cases. Furthermore, the so‐called minimum time step criteria are established for the Crank‐Nicolson scheme, the Galerkin‐time scheme, and the backward‐difference scheme used in the temporal discretization. For the forward‐difference scheme, no minimum time step exists as far as the accuracy is concerned. In the accuracy analysis, no specific initial and boundary conditions are invoked so that such established criteria can be applied to the parabolic PDEs subject to any initial and boundary conditions. These minimum time step criteria are verified in a series of numerical experiments for a one‐dimensional transient field problem with a known analytical solution. The minimum time step criteria developed in this study are useful for choosing appropriate time steps in numerical simulations of practical engineering problems. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

10.
In this article, a new numerical scheme for a degenerate Keller–Segel model with heterogeneous anisotropic tensors is treated. It is well‐known that standard finite volume scheme not permit to handle anisotropic diffusion without any restrictions on meshes. Therefore, a combined finite volume‐nonconforming finite element scheme is introduced, developed, and studied. The unknowns of this scheme are the values at the center of cell edges. Convergence of the approximate solution to the continuous solution is proved only supposing the shape regularity condition for the primal mesh. This scheme ensures the validity of the discrete maximum principle under the classical condition that all transmissibilities coefficients are positive. Therefore, a nonlinear technique is presented, as a correction of the diffusive flux, to provide a monotone scheme for general tensors. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1030–1065, 2014  相似文献   

11.
We present efficient partial differential equation methods for continuous time mean‐variance portfolio allocation problems when the underlying risky asset follows a jump‐diffusion. The standard formulation of mean‐variance optimal portfolio allocation problems, where the total wealth is the underlying stochastic process, gives rise to a one‐dimensional (1D) nonlinear Hamilton–Jacobi–Bellman (HJB) partial integrodifferential equation (PIDE) with the control present in the integrand of the jump term, and thus is difficult to solve efficiently. To preserve the efficient handling of the jump term, we formulate the asset allocation problem as a 2D impulse control problem, 1D for each asset in the portfolio, namely the bond and the stock. We then develop a numerical scheme based on a semi‐Lagrangian timestepping method, which we show to be monotone, consistent, and stable. Hence, assuming a strong comparison property holds, the numerical solution is guaranteed to converge to the unique viscosity solution of the corresponding HJB PIDE. The correctness of the proposed numerical framework is verified by numerical examples. We also discuss the effects on the efficient frontier of realistic financial modeling, such as different borrowing and lending interest rates, transaction costs, and constraints on the portfolio, such as maximum limits on borrowing and solvency. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 664–698, 2014  相似文献   

12.
This article is devoted to an extension of boundary elements method (BEM) for solving elliptic partial differential equations of general type with constant coefficients. As the fundamental solution of these equations was not available in the literature, BEM was not able to handle them, directly. So the dual reciprocity method (DRM) has been applied to tackle these problems. In this work, a fundamental solution for these equations is obtained and a new formulation is derived to solve them. Besides, we show that the rate of convergence of the new scheme is quadratic when singular (boundary and domain) integrals are calculated, accurately. The new scheme is applicable on complex domains, without needing internal nodes, just same as conventional BEM. So the CPU time of the new scheme is much less than that of the DRM. Numerical examples presented in the article show ability and efficiency of the new scheme in solving two‐dimensional nonhomogenous elliptic boundary value problems, clearly. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2027–2042, 2015  相似文献   

13.
For elliptic interface problems with flux jumps, this article studies robust residual‐ and recovery‐based a posteriori error estimators for the conforming finite element approximation. The residual estimator is a natural extension of that developed in [Bernardi and Verfürth, Numer Math 85 (2000), 579–608; Petzoldt, Adv Comp Math 16 (2002), 47–75], and the recovery estimator is a nontrivial extension of our method developed in Cai and Zhang, SIAM J Numer Anal 47 (2009) 2132–2156. It is shown theoretically that reliability and efficiency bounds of these error estimators are independent of the jumps provided that the distribution of the coefficients is locally monotone. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28:476–491, 2012  相似文献   

14.
In this article we use the monotone method for the computation of numerical solutions of a nonlinear reaction-diffusion-convection problem with time delay. Three monotone iteration processes for a suitably formulated finite-difference system of the problem are presented. It is shown that the sequence of iteration from each of these iterative schemes converges from either above or below to a unique solution of the finite-difference system without any monotone condition on the nonlinear reaction function. An analytical comparison result among the three processes of iterations is given. Also given is the application of the iterative schemes to some model problems in population dynamics, including numerical results of a model problem with known analytical solution. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 339–351, 1998  相似文献   

15.
In this article we study the convergence of the nonoverlapping domain decomposition for solving large linear system arising from semi‐discretization of two‐dimensional initial value problem with homogeneous boundary conditions and solved by implicit time stepping using first and two alternatives of second‐order FS‐methods. The interface values along the artificial boundary condition line are found using explicit forward Euler's method for the first‐order FS‐method, and for the second‐order FS‐method to use extrapolation procedure for each spatial variable individually. The solution by the nonoverlapping domain decomposition with FS‐method is applicable to problems that requires the solution on nonuniform meshes for each spatial variable, which will enable us to use different time‐stepping over different subdomains and with the possibility of extension to three‐dimensional problem. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 609–624, 2002  相似文献   

16.
A predictor–corrector (P–C) scheme based on the use of rational approximants of second‐order to the matrix‐exponential term in a three‐time level reccurence relation is applied to the nonlinear Klein‐Gordon equation. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. Both the predictor and the corrector scheme are analyzed for local truncation error and stability. The proposed method is applied to problems possessing periodic, kinks and single, double‐soliton waves. The accuracy as well as the long time behavior of the proposed scheme is discussed. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

17.
The cubic B‐spline collocation scheme is implemented to find numerical solution of the generalized Burger's–Huxley equation. The scheme is based on the finite‐difference formulation for time integration and cubic B‐spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second‐order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

18.
The aim of this article is to develop a new block monotone iterative method for the numerical solutions of a nonlinear elliptic boundary value problem. The boundary value problem is discretized into a system of nonlinear algebraic equations, and a block monotone iterative method is established for the system using an upper solution or a lower solution as the initial iteration. The sequence of iterations can be computed in a parallel fashion and converge monotonically to a maximal solution or a minimal solution of the system. Three theoretical comparison results are given for the sequences from the proposed method and the block Jacobi monotone iterative method. The comparison results show that the sequence from the proposed method converges faster than the corresponding sequence given by the block Jacobi monotone iterative method. A simple and easily verified condition is obtained to guarantee a geometric convergence of the block monotone iterations. The numerical results demonstrate advantages of this new approach. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

19.
We propose and analyze a Crank–Nicolson quadrature Petrov–Galerkin (CNQPG) ‐spline method for solving semi‐linear second‐order hyperbolic initial‐boundary value problems. We prove second‐order convergence in time and optimal order H2 norm convergence in space for the CNQPG scheme that requires only linear algebraic solvers. We demonstrate numerically optimal order Hk, k = 0,1,2, norm convergence of the scheme for some test problems with smooth and nonsmooth nonlinearities. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

20.
In this article, we develop an exponential high order compact alternating direction implicit (EHOC ADI) method for solving three dimensional (3D) unsteady convection–diffusion equations. The method, which requires only a regular seven‐point 3D stencil similar to that in the standard second‐order methods, is second order accurate in time and fourth‐order accurate in space and unconditionally stable. The resulting EHOC ADI scheme in each alternating direction implicit (ADI) solution step corresponding to a strictly diagonally dominant matrix equation can be solved by the application of the one‐dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments for three test problems are carried out to demonstrate the performance of the present method and to compare it with the classical Douglas–Gunn ADI method and the Karaa's high‐order compact ADI method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号