首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
The economic and environmentally friendly flame‐retardant compound, tetramethyl (6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(oxy)bis(methylene) diphosphonate ( CN‐1 ), was synthesized by a simple two‐step procedure from dimethyl phosphate, and its chemical structure was characterized by 1H, 13C, and 31P nuclear magnetic resonance and gas chromatography mass spectroscopy. Using the traditional pad–dry–cure method, we obtained several different add‐ons (wt%) by treating cotton twill fabric with flame retardant ( CN‐1 ). Thermogravimetric analysis, in an air and nitrogen atmosphere, of the modified cotton showed that decomposition occurred ~230°C with 16% residue weight char yield at 600°C, indicating high thermal stability for all treated levels. Limiting oxygen index (LOI) and the vertical flammability test were employed to determine the effectiveness of the flame‐retardant treatments on the fabrics. LOI values increased from ~18 vol% oxygen in nitrogen for untreated fabric to maximum of 34 vol% for the highest treatment level. Fabrics with higher levels of flame retardant also easily passed the vertical flammability test. Furthermore, Fourier transform infrared and scanning electron microscopy were utilized to characterize the chemical structure as well as the surface morphology of the flame‐retardant treated twill fabrics, including char area and the edge between unburned fabric and char area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The effectiveness of a phosphoramidate tetraethyl piperazine‐1,4‐diyldiphosphoramidate (TEPP) as a flame retardant on cotton twill fabrics was compared with that of a previously studied diethyl 4‐methylpiperazin‐1‐ylphosphoramidate (DEPP). TEPP was formed in a reaction between two phosphonates and a piperazine then cotton twill fabrics were treated with TEPP at different levels of add‐on (2–19 wt%) and characterized using vertical flammability, limiting oxygen index, microscale combustion calorimetry, and thermogravimetric analysis methods. The results showed better flame retardancy and thermal behavior for TEPP fabrics when compared with DEPP fabrics. When the morphological structure of the formed char from the burned areas was examined by scanning electron microscopy, the results revealed a fairly insignificant difference in the mode of action between the two types of fabric. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Two new monomers (2‐methyl‐oxiranylmethyl)‐phosphonic acid dimethyl ester ( 3 ) and [2‐(dimethoxy‐phosphorylmethyl)‐oxyranylmethyl]‐phosphonic acid dimethyl ester ( 6 ) were prepared and used with dicyandiamide ( 7 ) and citric acid ( 8 ) to impart flame resistance to cotton plain weave, twill, and 80:20‐cotton/polyester fleece fabrics. Monomers 3 and 6 were prepared from methallyl chloride ( 1 ) and 3‐chloro‐2‐chloromethylpropene ( 4 ) respectively via a two‐step phosphorylation epoxidation sequence in 79.3 and 67.5% overall yields. 1H and 13C nuclear magnetic resonance (NMR) and gas chromatographic mass spectrometry (GCMS) data were used to confirm their structures. Decomposition of monomers 3 and 6 in nitrogen by thermogravimetric analysis (TGA) occurred at 110 and 220°C, respectively. The mixtures of 3 : 7 : 8 and 6 : 7 : 8 (in 2:1:1 ratio) exhibited peak‐curing temperatures by differential scanning calorimeter (DSC) at 125 and 150°C and the temperatures were deemed suitable for curing treated fabrics without marring them. Flame‐retardant treatments were applied by the pad‐dry‐cure methods. All untreated fabrics showed limiting oxygen index (LOI) values of about 18% oxygen in nitrogen. For formulations with monomer 3 , LOI values for the three types of treated fabrics were greater than 25.5% when add‐on values for the formulation were 17.4, 12.7, and 21.1%. For formulations comprising monomer 6 , LOI values were greater than 28.6% when add‐on values for the formulation were 18.3, 13.1, and 16.7%. With the formulation comprising monomer 3 , the three fabrics passed the vertical flame test when add‐on values were 21.6, 12.7, and 23.5%, respectively; and with the formulation comprising monomer 6 , they passed the vertical flame test when add‐on values were 13.8, 8.4, and 18.0%. In all cases char lengths of fabrics that passed the vertical flame test were less than 50% of original length and after‐flame time was 0 sec and after‐glow time was less than 2 sec. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

4.
In this work, 12‐tungestocobaltic acid based organic–inorganic hybrid material, [Bmim]6CoW12O40 (CoW) was synthesized and applied as a synergist in polypropylene (PP)/intumescent flame retardant (IFR) composites. The flame retardant properties were investigated by the limiting oxygen index (LOI), UL‐94 vertical burning test, thermal gravimetric analyzer (TGA), cone calorimeter and scanning electron microscopy (SEM) etc. The results showed that the PP composites with 16 wt% IFR and 1 wt% CoW achieves the UL‐94 V‐0 rating and gets a LOI value 28.0. However, only add no less than 25 wt% single IFR, can the PP composites obtain the UL‐94 V‐0 rating, which suggests that CoW has good synergistic effects on flame retardancy of PP/IFR composites. In addition, the SEM and cone calorimeter tests indicated the CoW improves the quality of char layer. The rate of char formation has been enhanced also because of the existence of CoW. It is the combination of a better char quality and a high rate of char formation promoted by CoW that results in the excellent flame retardancy of PP/IFR composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This study showed that greige cotton nonwoven fabric can effectively be flame retardant by applying the phosphorus of diammonium phosphate (DAP) as low as 0.8 wt% with the addition of urea. At such a low content of phosphorus, the char length and limiting oxygen index (LOI) were continuously decreased and increased, respectively, as the concentration of urea increased. The effect of urea additive on the thermal decomposition of flame retardant greige cotton nonwoven fabric was investigated by thermogravimetry, ATR-FTIR, XRD, 1H → 13C CP/MAS NMR, and SEM. The results indicated that, upon heating, urea not only facilitated the phosphorylation reaction of DAP but also introduced carbamate groups into cellulose to decrease the degree of crystallinity prior to the decomposition of the crystalline cellulose. Compared with DAP treatment alone, the addition of urea accelerated the decomposition of glycosyl units, which resulted in a slight increase of weight loss and decrease of char yield. The char morphology observed after LOI tests indicates that urea released nonflammable gases, which blew the carboneous char layer to protect the underlying substrate.  相似文献   

6.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A novel phosphorus‐containing compound diphenyl‐(1, 2‐dicarboxylethyl)‐phosphine oxide defined as DPDCEPO was synthesized and used as a flame retardant curing agent for epoxy resins (EP). The chemical structure of the prepared DPDCEPO was well characterized by Fourier transform infrared spectroscopy, and 1H, 13C and 31P nuclear magnetic resonance. The DPDCEPO was mixed with curing agent of phthalic anhydride (PA) with various weight ratios into epoxy resins to prepare flame retardant EP thermosets. The flame retardant properties, combustion behavior and thermal analysis of the EP thermosets were respectively investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimeter measurement, dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of the char residues for EP thermosets were respectively investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS). The water resistant properties of the cured EP were evaluated by putting the samples into distilled water at 70°C for 168 hr. The results revealed that the EP/20 wt% DPDCEPO/80 wt% PA thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.2%. The cone test results revealed that the incorporation of DPDCEPO effectively reduced the combustion parameters of the epoxy resin thermosets, such as heat release rate and total heat release. The dynamic mechanical thermal analysis test demonstrated that the glass transition temperature (Tg) decreased with the increase of DPDCEPO content. The TGA results indicated that the incorporation of DPDCEPO promoted the decomposition of epoxy resin matrix ahead of time and led to a higher char yield and thermal stability at high temperatures. The surface morphological structures and analysis of the XPS of the char residues of EP thermosets revealed that the introduction of DPDCEPO benefited the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resin material surface during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After water resistance tests, the EP/20 wt% DPDCEPO/80 wt% PA thermosets retained excellent flame retardancy, and the moisture adsorption of the EP thermosets decreased with the increase of DPDCEPO content in EP thermosets because of the existence of the P–C bonds and the rigid aromatic hydrophobic structure in DPDCEPO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A novel environmentally friendly flame-retardant compound, diethyl 3-(triethoxysilanepropyl) phosphoramidate (DTP) was synthesized via a simple one-step procedure with good yield and characterized by FT-IR and 1H-NMR, 31P-NMR and 29Si-NMR. The synthesized compound was coated onto cotton fabrics with different levels of add-ons (5–17 mass%) using the traditional pad-dry-cure method. SEM and XPS were conducted to characterize the surfaces of the coated cotton fabrics. The XPS results showed that DTP was attached to cotton through covalent bond. Cone calorimeter test showed that the cotton fabric treated with DTP became less flammable due to the lower HRR, THR and CO2/CO ratio. The modified cotton fabrics exhibited efficient flame retardancy, which was evidenced by limiting oxygen index (LOI) and vertical flammability test. Cotton fabrics treated with DTP in 5–17 mass% add-ons had high LOI values of 23–32%. Thermogravimetric analysis results show that the usage of DTP promotes degradation of the cotton fabrics and catalyzes its char formation.  相似文献   

9.
The flame‐retardant rigid polyurethane foams (RPUFs) with dimethyl methylphosphonate (DMMP) and modified ammonium polyphosphate (MAPP) were prepared. The results showed that the limiting oxygen index (LOI) value was improved by adding DMMP into RPUF/MAPP composite; 10 wt% of DMMP addition can increase the LOI value from 24.3% to 26.0%, where the commercial application standard of RPUF is achieved. Further benefits of using DMMP/MAPP system included restraining of total heat and smoke release, improvement of thermal stability, and char yield of RPUF. The thermogravimetric analysis (TGA)‐gas chromatography‐mass spectrometer (GC‐MS) results indicated that DMMP/MAPP could continuously release PO2 and PO·free radicals in the gas phase. In addition, DMMP/MAPP exhibited the charring effect and barrier effect in the condensed phase, such bi‐flame retardant effect exerted by DMMP/MAPP resulted in the enhanced flame retardant property of RPUF.  相似文献   

10.
A novel polyphosphazene/triazine bi‐group flame retardant in situ doping nano ZnO (A4‐d‐ZnO) was synthesized and applied in poly (lactic acid) (PLA). Fourier transform infrared (FTIR), solid state nuclear magnetic resonance (SSNMR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS) were used to confirm the chemical structure of A4‐d‐ZnO. The thermal stability and the flame‐retardant properties of the PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning test (UL‐94), and micro combustion calorimeter (MCC) test. The results of XPS showed that A4‐d‐ZnO has been synthesized, and the doping ratio of ZnO was 7.2% in flame‐retardant A4‐d‐ZnO. TGA results revealed that A4‐d‐ZnO had good char forming ability (40 wt% at 600°C). The results of LOI, vertical burning test, and MCC showed that PLA/5%A4‐d‐ZnO composite acquired a higher LOI value (24%), higher UL94 rating, and lower pk‐HRR (501 kW/m2) comparing with that of pure PLA. It indicated that a small amount of flame‐retardant A4‐d‐ZnO could achieve great flame‐retardant performance in PLA composites. The catalytic chain scission effect of A4‐d‐ZnO could make PLA composites drip with flame and go out during combustion, which was the reason for the good flame‐retardant property. Moreover, after the addition of A4‐d‐ZnO, the impaired mechanical properties of PLA composites are minimal enough.  相似文献   

11.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes an attempt to develop a durable finishing method in order to improve the fire performance of polyamide 66 fabrics. Hydroxymethylation with a 36% formaldehyde aqueous solution in association with a pad‐curing process to enable the fabric to react with flame‐retardant solutions was used in the finishing process. The fire performance of treated samples was characterized by limiting oxygen index (LOI) and vertical flammability tests, and the results show that the LOI value can increase from 21.6% to 46.2%. The thermal behavior of untreated and treated polyamide 66 fabrics was investigated by using thermogravimetic analysis and differential scanning calorimetry. Furthermore, residual char of treated fabric sample is much higher than that of untreated fabric sample. Fourier transform infrared spectroscopy proves that the substituted hydroxymethyl groups do exist on the molecular chain of polyamide fabric sample after surface modification. The morphology of residue char of polyamide 66 fabric samples was analyzed by scanning electron microscope, and the mechanical properties were also investigated and discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Evaluating and analyzing the performance of flame retardant (FR) textiles are a critical part of research and development of new FR textiles products by the industry. The testing methods currently used in the industry have significant limitations. Most analytical and testing techniques are not able to measure heat release rate (HRR), the single most important parameter in evaluating the fire hazard of materials. It is difficult to measure HRR of textile fabrics using cone calorimetry because textile fabrics are dimensionally thin samples. The recently developed micro-scale combustion calorimetry (MCC) is able to measure the following flammability parameters for textile using milligram sample sizes: heat release capacity, HRR, temperature at peak heat release rate (PHRR), total heat release and char yield. In this research, we applied MCC to evaluate the flammability of different textile fabrics including cotton, rayon, cellulose acetate, silk, nylon, polyester, polypropylene, acrylic fibers, Nomex and Kevlar. We also studied the cotton fabrics treated with different flame retardants. We found that MCC is able to differentiate small differences in flammability of textile materials treated with flame retardants. We were also be able to calculate the limiting oxygen index (LOI) using the thermal combustion properties of various textile samples measured by the MCC. The calculated LOI data have yielded good agreement with experimental LOI results. Thus, we conclude that MCC is an effective new analytical technique for measuring textile flammability and has great potentials in the research and development of new flame retardants for textiles.  相似文献   

14.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In order to prepare halogen-free flame-retardant glass-fiber-reinforced poly(ethylene terephthalate) (FR-GF-PET), a novel flame retardant containing three flame-retardant elements, P, N and S, was synthesized by melt condensation reaction. Its chemical structure was characterized by FT-IR and 1H NMR spectra. FR-GF-PET was prepared by melt-mixing the flame retardant with GF-PET. The effects of the flame retardant on the flammability and thermally decomposing behaviors of GF-PET were studied via LOI, UL-94 and TGA tests. The results showed that despite a negative effect on the thermal stability of GF-PET, the incorporation of the flame retardant improved the flame retardancy of GF-PET largely. The LOI values of GF-PET increase linearly with the increase of flame retardant content. The GF-PET passed the V-0 rating in UL-94 tests when 15 wt% of the flame retardant was added to GF-PET. An interesting phenomenon was found, that is, with the increase of flame retardant content, the flame retardancy of the system increased but the char yield decreased, which was explained according to the evidences of XPS tests and the kinetics of thermally decomposing reaction.  相似文献   

16.
Liu  Jian  Zhang  Zheng  Sun  Ling  Dong  Chaohong  Kong  Dezheng  Wang  Shuai  Lu  Zhou 《Cellulose (London, England)》2021,28(14):9505-9523

A synergistic flame retardant (silicon, phosphorus and nitrogen) based on cyclic polysiloxane, ammonium salt of tetramethylcyclosiloxyl-piperazin-phosphinic acid (APCTSi) was successfully prepared and firmly bonded to cotton fabric through a chemical grafting method. The chemical structure of APCTSi was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H and 31P nuclear magnetic resonance (1H NMR and 31P NMR). The scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) proved that APCTSi successfully adhered to the surface of cotton fabric and the elements on the surface of cotton fabric were evenly distributed. The flame retardant properties were characterized by limiting oxygen index (LOI), vertical burning test, thermogravimetric (TG) analysis and TG-FTIR. The limiting oxygen index (LOI) can reach 30.9% with a char length of 8.7 cm for the weight gain of APCTSi was 16.2%. The combustion behavior was characterized by cone calorimetry test. The peak heat release rate (pHRR) and total heat release (THR) values of treated cotton fabric decreased by 30% and 48% respectively compared to that of pure cotton fabric. All the results proved that the cotton fabric treated by APCTSi had the flame retardant effect of condensed phase (forming stable char layer) and gas phase (releasing nonflammable gases).

Graphic abstract
  相似文献   

17.
A novel phosphorus‐containing silicone flame retardant (PDPSI) was prepared by Mannish reaction, and a series of PDPSI/PET composites were prepared by melt blending method. The nuclear magnetic resonance (1H NMR), Fourier transformation infrared (FTIR), and the thermogravimetric analyzer (TGA) results indicated that PDPSI showed network structure and owned good thermal stability, with the char residue of 62.2% at 800°C. The flame retardancy of PDPSI/PET composites was characterized by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter (CCT). The results revealed that the addition amount of PDPSI was 5%, the LOI value of PDPSI/PET composites increased to 27.3%, and UL‐94 test passed V‐0 rating. When the PDPSI loading was 3%, PET composites showed excellent flame retardancy and smoke suppression, with a decrease in the peak heat release rate (PHRR) by 71.19% and the total smoke release (TSP) reduced from 14.4 to 11.1m2. The scanning electron microscopy (SEM) and FTIR results of char residue demonstrated that the flame‐retardant mechanism of PDPSI was solid phase flame retardant. PDPSI catalyzed the aromatization reaction of PET to promote the formation of a dense and continuous carbon layer, finally improving the flame retardancy and smoke suppression properties of PET.  相似文献   

18.
A novel flame retardant containing cellulose, phosphorus and ferrum complex (Cell‐P‐Fe) was successfully synthesized and then it was used as flame retardants in epoxy resins (EP). Due to the present of acid sources and carbon sources, the Cell‐P‐Fe exhibits improved thermal stability and flame retardant properties. The EP/Cell‐P‐Fe composites with 10 wt% of Cell‐P‐Fe show remarkably improved LOI and UL‐94 values compared with the flame retardants without ferrum. At the loading of 10.0 wt% flame retardants, the char yield for EP/Cell‐P‐Fe composites increased to 29.1 wt%, indicating the improved thermal stability at high temperature. Moreover, thermogravimetric analysis, morphology of char residues and FTIR results demonstrate that stable char layers are formed on the surface of the composites during the combustion, attributing to the catalytic carbonization effect of Fe and phosphorus and the present of cellulose as carbon source. The stable char layers, which can protect the underlying materials from heat and oxygen, play an important role in the flame retardancy enhancement.  相似文献   

19.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

20.
N-Methylol dimethylphosphonopropionamide (MDPA) is one of the most commonly used durable flame retardant agents for cotton. In our previous research, we developed a new flame retardant finishing system based on a hydroxy-functional organophosphorus oligomer (HFPO) and bonding agents, such as dimethyloldihydroxyethyleneurea (DMDHEU) and trimethylolmelamine (TMM). In this research, we compared the flame resistant performance as well as physical properties of the cotton fabric treated with these two flame retardant finishing systems. The cotton fabric treated with MDPA/TMM has a higher initial limiting oxygen index (LOI) than that of the fabric treated with HFPO/TMM due to higher nitrogen content in the system. The LOI of the cotton fabric treated with the HFPO and MDPA systems becomes identical when the treated fabric contains equal amount of phosphorus and nitrogen. The MDPA/TMM shows higher laundering durability on cotton than HFPO/TMM system. The fabric treated with HFPO/TMM and MDPA/TMM has low wrinkle resistance and low strength loss whereas the fabric stiffness significantly increases when the TMM concentration is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号