首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

3.
The simultaneous ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) and 2‐hydroxyethyl methacrylate (HEMA) polymerization via reversible addition fragmentation chain transfer (RAFT) chemistry and the possible access to graft copolymers with degradable and nondegradable segments is investigated. HEMA and ε‐CL are reacted in the presence of cyanoisopropyl dithiobenzoate (CPDB) and tin(II) 2‐ethylhexanoate (Sn(Oct)2) under typical ROP conditions (T > 100 °C) using toluene as the solvent in order to lead to the graft copolymer PHEMA‐g‐PCL. Graft copolymer formation is evidenced by a combination of size‐exclusion chromatography (SEC) and NMR analyses as well as confirmed by the hydrolysis of the PCL segments of the copolymer. With targeted copolymers containing at least 10% weight of PHEMA and relatively small PHEMA backbones (ca. 5,000–10,000 g mol?1) the copolymer grafting density is higher than 90%. The ratio of free HEMA‐PCL homopolymer produced during the “one‐step” process was found to depend on the HEMA concentration, as well as the half‐life time of the radical initiator used. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3058–3067, 2008  相似文献   

4.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

5.
Biodegradable and biocompatible PCL‐g‐PEG amphiphilic graft copolymers were prepared by combination of ROP and “click” chemistry via “graft onto” method under mild conditions. First, chloro‐functionalized poly(ε‐caprolactone) (PCL‐Cl) was synthesized by the ring‐opening copolymerization of ε‐caprolactone (CL) and α‐chloro‐ε‐caprolactone (CCL) employing scandium triflate as high‐efficient catalyst with near 100% monomer conversion. Second, the chloro groups of PCL‐Cl were quantitatively converted into azide form by NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction was carried out between azide‐functionalized PCL (PCL‐N3) and alkyne‐terminated poly(ethylene glycol) (A‐PEG) to give PCL‐g‐PEG amphiphilic graft copolymers. The composition and the graft architecture of the copolymers were characterized by 1H NMR, FTIR, and GPC analyses. These amphiphilic graft copolymers could self‐assemble into sphere‐like aggregates in aqueous solution with diverse diameters, which decreased with the increasing of grafting density. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A facile approach to synthesis of ABCDE‐type H‐shaped quintopolymer comprising polystyrene (PSt, C) main chain and poly(ethylene glycol) (PEG, A), poly(ε‐caprolactone) (PCL, B), poly(L ‐lactide) (PLLA, D), and poly(acrylic acid) (PAA, E) side chains was described, and physicochemical properties and potential applications as drug carriers of copolymers obtained were investigated. Azide‐alkyne cycloaddition reaction and hydrolysis were used to synthesize well‐defined H‐shaped quintopolymer. Cytotoxicity studies revealed H‐shaped copolymer aggregates were nontoxic and biocompatible, and drug loading and release properties were affected by macromolecular architecture, chemical composition, and pH value. The release rate of doxorubicin from copolymer aggregates at pH 7.4 was decreased in the order PAA‐b‐PLLA > H‐shaped copolymer > PEG‐PCL‐PSt star, and the release kinetics at lower pH was faster. The H‐shaped copolymer aggregates have a potential as controlled delivery vehicles due to their excellent storage stability, satisfactory drug loading capacity, and pH‐sensitive release rate of doxorubicin. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

8.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

9.
We report an efficient way, sequential double click reactions, for the preparation of brush copolymers with AB block‐brush architectures containing polyoxanorbornene (poly (ONB)) backbone and poly(ε‐caprolactone) (PCL), poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA) side chains: poly(ONB‐g‐PMMA)‐b‐poly(ONB‐g‐PCL) and poly(ONB‐g‐PtBA)‐b‐poly(ONB‐g‐PCL). The living ROMP of ONB affords the synthesis of well‐defined poly(ONB‐anthracene)20b‐poly (ONB‐azide)5 block copolymer with anthryl and azide pendant groups. Subsequently, well‐defined linear alkyne end‐functionalized PCL (PCL‐alkyne), maleimide end‐functionalized PMMA (PMMA‐MI) and PtBA‐MI were introduced onto the block copolymer via sequential azide‐alkyne and Diels‐Alder click reactions, thus yielding block‐brush copolymers. The molecular weight of block‐brush copolymers was measured via triple detection GPC (TD‐GPC) introducing the experimentally calculated dn/dc values to the software. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Summary: The reaction of triphosgene with poly(ethylene glycol) yielded poly(ethylene glycol) dichloroformate. This difunctional cross‐linker was allowed to react with poly(ε‐caprolactone) bearing carbanionic sites obtained by activation with lithium diisopropylamide. The reaction resulted in the cross‐linking of poly(ε‐caprolactone) chains by poly(ethylene glycol) segments, giving copolymer networks that gel in both organic and aqueous media.

Schematic of the PCL‐g‐PEG copolymers synthesized here.  相似文献   


11.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A supramolecular block copolymer is prepared by the molecular recognition of nucleobases between poly(2‐(2‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐SS‐poly(ε‐caprolactone)‐adenine (P(MEO2MA‐co‐OEGMA)‐SS‐PCL‐A) and uracil‐terminated poly(ethylene glycol) (PEG‐U). Because the block copolymer is linked by the combination of covalent (disulfide bond) and noncovalent (A U) bonds, it not only has similar properties to conventional covalently linked block copolymers but also possesses a dynamic and tunable nature. The copolymer can self‐assemble into micelles with a PCL core and P(MEO2MA‐co‐OEGMA)/PEG shell. The size and morphologies of the micelles/aggregates can be adjusted by altering the temperature, pH, salt concentration, or adding dithiothreitol (DTT) to the solution. The controlled release of Nile red is achieved at different environmental conditions.

  相似文献   


13.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

14.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

15.
Summary: Novel, star‐shaped, amphiphilic block copolymers composed of fully degradable poly(caprolactone) were synthesized by sequential addition polymerization. In the first step, four‐arm macroinitiators were produced by ring‐opening polymerization of caprolactone by initiation with pentaerythritol. Then, block copolymers were synthesized by sequential addition of 4‐(2‐benzyloxyethyl)‐ε‐caprolactone to the four‐arm macroinitiators. Star‐shaped, amphiphilic block copolymers containing poly(caprolactone)‐block‐poly[4‐(2‐hydroxyethyl)caprolactone] segments were obtained by catalytic debenzylation.

Four‐arm amphiphilic polycaprolactone star block copolymer.  相似文献   


16.
Well‐defined drug‐conjugated amphiphilic A2B2 miktoarm star copolymers [(PCL)2‐(PEG)2‐D] were prepared by the combination of controlled ring‐opening polymerization (CROP) and “click” reaction strategy. First, bromide functionalized poly(ε‐caprolactone) (PCL‐Br) with double hydroxyl end groups was synthesized by the CROP of ε‐caprolactone using 2,2‐bis(bromomethyl)propane‐1,3‐diol as a difunctional initiator in the presence of Sn(Oct)2 at 110 °C. Next, the bromide groups of PCL‐Br were quantitatively converted to azide form by NaN3 to give PCL‐N3. Subsequently, the end hydroxyl groups of PCL‐N3 were capped with ibuprofen as a model drug at room temperature. Finally, copper(I)‐catalyzed cycloaddition reaction between ibuprofen‐conjugated PCL‐N3 and slightly excess alkyne‐terminated poly(ethylene glycol) (A‐PEG) led to ibuprofen‐conjugated A2B2 miktoarm star copolymer [(PCL)2‐(PEG)2‐D]. The excess A‐PEG was removed by dialysis. 1H NMR, FTIR and SEC analyzes confirmed the expected miktoarm star architecture. These amphiphilic miktoarm star copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In addition, the drug‐loading capacity of these drug‐conjugated miktoarm star copolymers as well as their nondrug‐conjugated analogs were also investigated in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

17.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

18.
In this article, we studied the effect of hyaluronic acid (HA) on thermogelation of poly(caprolactone‐b‐ethylene glycol‐b‐caprolactone) (PCL‐PEG‐PCL) aqueous solution designed as an injectable system for prevention of postsurgical tissue adhesion. The PCL‐PEG‐PCL triblock copolymers were simply synthesized by ring‐opening polymerization of ε‐caprolactone (CL) in the presence of PEG as a polymeric initiator. The synthesized copolymers were confirmed by proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Possible interactions between HA and PCL‐PEG‐PCL triblock copolymers in the blend were evaluated by Fourier‐transform infrared spectroscopy (FTIR). The effect of HA on the micellization of PCL‐PEG‐PCL aqueous solution was investigated by dye solubilization method and electrophoretic lighting scattering (ELS) spectrophotometer. Also, the thermogelling behaviors of the PCL‐PEG‐PCL triblock copolymers in the presence of HA and their mechanism were investigated by test tube inverting method, 13C‐NMR, 1H‐NMR, Advanced Rheometic Expansion System (ARES), and differential scanning calorimetry (DSC). The PCL‐PEG‐PCL/HA blend aqueous solutions undergo the sol‐gel‐sol transition in response to an increase in temperature (10–60 °C) and the gelation of the PCL‐PEG‐PCL was rather accelerated by HA. Presumably, this accelerated gelation seems to arise from the attractive interactions between them and the effect of chain confinement in the micelle corona region. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3629–3637, 2008  相似文献   

19.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

20.
Well‐defined linear α‐anthracene‐ω‐maleimide functionalized polystyrene (l‐Anth‐PS‐MI) and linear α‐alkyne‐ω‐maleimide functionalized poly(tert‐butyl acrylate) (l‐alkyne‐PtBA‐MI) homopolymers, and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐PtBA (l‐Anth‐PS‐b‐PtBA‐MI) and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐poly(ε‐caprolactone) (PCL) (l‐Anth‐PS‐b‐PCL‐MI) block copolymers were obtained via combination of atom transfer radical polymerization (ATRP)/ring opening polymerization (ROP) and azide‐alkyne click reaction strategy. Subsequently, these linear homo and block copolymers were efficiently clicked via Diels‐Alder reaction to give their corresponding cyclic homo and block copolymers at reflux temperature of toluene for 48 h under 7–4 × 10?5 M conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号