首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Combining hydrophobic materials such as polydimethylsiloxane (PDMS), a natural hydrophobic material with typical hydrophilic monomers without using organic solvent remains a big challenge due to their extreme different properties; hence, fabricating a class of silicone hydrogels with two extremes without use of organic solvents could bring us a novel class of silicone hydrogels. Herein, a range of PDMS‐HEMA‐PEGMA hydrogels was prepared from hydroxyl‐terminated PDMS, 2‐hydroxyethylmethacrylate (HEMA), poly (ethylene glycol) methacrylate (PEGMA), and isophorone diisocyanate via condensation and radical copolymerization reactions. The infrared results confirmed the PDMS‐HEMA‐PEGMA network formation, while the hydrophilicity of the as‐prepared block copolymer was dependent on (PDMS‐HEMA)/PEGMA ratio. Increasing the PEGMA content resulted in increased equilibrium water content, phase separation, surface roughness, and tensile strength, while the tensile modulus, elongation at break, optical transmittance, water contact angle, and oxygen permeability (Dk) were decreasing. At PEGMA content of 28.3%, the relative protein adsorption ratio decreased to 20% and 36% for bovine serum albumin and lysozyme, respectively, compared with that of the control (PDMS‐HEMA), suggesting antiprotein adsorption ability. In overall, the results showed that the PDMS‐HEMA‐PEGMA hydrogels not only exhibited remarkable hydrophilicity and suppressed protein adsorption but also maintained higher optical transparency and oxygen permeability (Dk).  相似文献   

2.
Comb‐like amphiphilic poly(poly((lactic acid‐co‐glycolic acid)‐block‐poly(ethylene glycol)) methacrylate (poly((PLGA‐b‐PEG)MA)) copolymers were synthesized by radical polymerization. (PLGA‐b‐PEG)MA macromonomer was prepared by ring‐opening bulk polymerization of DL ‐lactide and glycolide using purified poly(ethylene glycol) monomethacrylate (PEGMA) as an initiator. (PLGA‐b‐PEG)MA macromonomer was copolymerized with PEGMA and/or acrylic acid (AA) by radical polymerization to produce comb‐like amphiphilic block copolymers. The molecular weight and chemical structure were investigated by GPC and 1H NMR. Poly((PLGA‐b‐PEG)MA) copolymer aqueous solutions showed gel–sol transition behavior with increasing temperature, and gel‐to‐sol transition temperature decreased as the compositions of the hydrophilic PEGMA and AA increased. The gel‐to‐sol transition temperature of the terpolymers of the poly((PLGA‐b‐PEG)MA‐co‐PEGMA‐co‐AA) also decreased when the pH was increased. The effective micelle diameter obtained from dynamic light scattering increased with increasing temperature and with increasing pH. The critical micelle concentration increased as the composition of the hydrophilic monomer component, PEGMA and AA, were increased. The spherical shape of the hyperbranched polymers in aqueous environment was observed by atomic force microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1954–1963, 2008  相似文献   

3.
A new class of temperature and pH dual‐responsive and injectable supramolecular hydrogel was developed, which was formed from block copolymer poly(ethylene glycol)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] (PEG‐b‐PDMAEMA) and α‐cyclodextrin (α‐CD) inclusion complexes (ICs). The PEG‐b‐PDMAEMA diblock copolymers with different ratio of ethylene glycol (EG) to (2‐dimethylamino)ethyl methacrylate (DMAEMA) (102:46 and 102:96, respectively) were prepared by atom transfer radical polymerization (ATRP). 1H NMR measurement indicated that the ratio of EG unit to α‐CD in the resulted ICs was higher than 2:1. Thermal analysis showed that thermal stability of ICs was improved. The rheology studies showed that the hydrogels were temperature and pH sensitive. Moreover, the hydrogels were thixotropic and reversible. The self‐assembly morphologies of the ICs in different pH and ionic strength environment were studied by transmission electron microscopy. The formed biocompatible micelles have potential applications as biomedical and stimulus‐responsive material. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2143–2153, 2010  相似文献   

4.
To synthesize the novel molecular‐ and pH‐stimulus‐responsive hydrogel, we prepared poly(ethylene glycol)‐based hydrogel containing ionic groups. We evaluated the fundamental swelling/shrinking properties of the hydrogels synthesized by various conditions. Decreasing the molecular weight of a crosslinker provided the increasing of the equilibrium swelling ratio. Also, the equilibrium swelling ratio was changed by the introduction of functional ionic monomers and its compositions. Furthermore, the swelling/shrinking behaviors of the hydrogels were affected by the environmental condition of aqueous solution, in fact the hydrogels were considerably shrunk (to one‐fifth volume) using a di‐ionic solute in the aqueous solution through the ionic interactions between the hydrogel and the solutes. Additionally, the specific shrinking to diamine compounds was also observed in response to pH change. These results clearly show the swelling/shrinking responsibility of the hydrogels toward the molecular recognitions and its pH conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3153–3158  相似文献   

5.
Considering the large number of applications for hydrogels, a better understanding of the relation between molecular structure and mechanical properties for well‐defined hydrogel is essential. A new library has been compiled of poly(ethylene glycol) polymers (PEG) of different length end functionalized with diallyl, dithiol, and dimethacrylate, and crosslinked with complementary trifunctional crosslinkers. In this study, the hydrogels were initially analyzed by FT‐Raman and NMR to study the conversion ratio of the functional groups. The effects of solvent type, solid content concentration, curing time and length of the PEG chains on the final leaching, swelling and tensile properties of the hydrogels were studied. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Poly(ethylene glycol)‐grafted‐multiwalled carbon nanotube (MWNT‐g‐PEG) was synthesized by a coupling reaction and formed inclusion complexes (ICs) after selective threading of the PEG segment of the MWNT‐g‐PEG through the cavities of α‐cyclodextrins (α‐CDs) units. The polypseudorotaxane structures of the as‐obtained hydrogels were confirmed by 1H NMR, X‐ray diffraction and DSC analyses. The complexation of the PEG segments with α‐CDs and the hydrophobic interaction between the MWNT resulted in the formation of supramolecular hybrid hydrogels with a strong network. Thermal analysis showed that the thermal stability of the hydrogel was substantially improved by up to 100 °C higher than that of native hydrogel. The resultant hybrid hydrogels were found to be thixotropic and reversible, and could be applied as a promising injectable drug delivery system. The mechanical strength of the hybrid hydrogels was greatly improved in comparison with that of the corresponding native hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3145–3151, 2010  相似文献   

7.
聚乙二醇对PAMPS/PAM双网络水凝胶性能的影响   总被引:2,自引:0,他引:2  
采用紫外光引发聚合制备了聚乙二醇(PEG)改性的聚(2-丙烯酰胺-2-甲基丙磺酸)/聚丙烯酰胺(PAMPS/PAM)双网络水凝胶.测定并比较了PEG改性前后双网络水凝胶的溶胀动力学以及单网络水凝胶中丙烯酰胺(AM)的吸收量;用扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PEG改性前后双网络水凝胶的压缩及拉伸性能.结果表明,经PEG改性后的双网络水凝胶有较高的溶胀比;改性后单网络水凝胶更易吸收AM;改性后双网络水凝胶压缩形变率达到90%以上、拉伸形变率是未改性双网络水凝胶的2倍.  相似文献   

8.
Macroporous poly(acrylamide) hydrogels have been synthesized by using poly(ethylene glycol) (PEG) with three different molecular weights as the pore‐forming agent. Scanning electron microscope graphs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights of PEG during the polymerization reaction. The swelling ratios of the PEG‐modified hydrogels were much higher than those for the same type of hydrogel prepared via conventional method. However, the swelling/deswelling ratios of the PEG‐modified hydrogels were affected slightly by the change in the amount of the PEG. Scanning electron microscopy experiments, together with swelling ratio studies, reveal that the PEG‐modified hydrogels are characterized by an open structure with more pores and higher swelling ratio, but lower mechanical strength, compared the conventional hydrogel. PAAm has potential applications in controlled release of macromolecular active agents.  相似文献   

9.
This work presents the grafting of poly(ethylene glycol) (PEG) on the SiO2 nanoparticles by the use of the azo‐groups bonded SiO2 as a radical initiator and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as a macromonomer, respectively. Then a kind of organic–inorganic composite particles with brush‐like PEG fixed covalently on the SiO2 nanoparticles, SiO2–PEG, is synthesized. The successful synthesis of SiO2–PEG is confirmed by FT‐IR, XPS, and TEM techniques. Results show that the conversion degree of PEGMA can reach nearly 30% while the PEG graft amount accounts for ca. 43% of the total weight of the composite particles. After the PEG is grafted on the SiO2 nanoparticles, the mobility of PEG chains is hindered by the proximity of oxide phase of SiO2. As a result, PEG phase is strongly disturbed. Consequently, the grafted PEG melts at a low temperature with small quantity of heat enthalpy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Ethyl cellulose graft poly(poly(ethylene glycol) methyl ether methacrylate) (EC‐g‐P(PEGMA)) amphiphilic copolymers were synthesized via atom transfer radical polymerization (ATRP) and characterized by FTIR, 1H NMR, and gel permeation chromatography. Reaction kinetics analysis indicated that the graft copolymerization is living and controllable. The self‐assembly and thermosensitive property of the obtained EC‐g‐P(PEGMA) amphiphilic copolymers in water were investigated by dynamic light scattering, transmission electron microscopy, and transmittance. It was found that the EC‐g‐P(PEGMA) amphiphilic copolymers can self‐assemble into spherical micelles in water. The size of the micelles increases with the increase of the side chain length. The spherical micelles show thermosensitive properties with a lower critical solution temperature around 65 °C, which almost independent on the graft density and the length of the side chains. The obtained EC‐g‐P(PEGMA) graft copolymers have both the unique properties of poly(ethylene glycol) and cellulose, which may have the potential applications in biomedicine and biotechnology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 46: 6907–6915, 2008  相似文献   

11.
Macroporous, temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPAAm) hydrogels were synthesized with poly(ethylene glycol)s (PEGs; molecular weight = 2000–6000) as the pore‐forming agents. The influence of the molecular weight and PEG content on the responsive kinetics of these macroporous hydrogels was investigated. The PEG‐modified PNIPAAm hydrogels were characterized by the swelling ratio, deswelling–reswelling kinetics, Fourier transform infrared, and differential scanning calorimetry. The morphology of these hydrogels was analyzed with scanning electron microscopy. The prepared macroporous hydrogels exhibited some unique properties in comparison with the gels with low molecular weight PEGs (molecular weight < 2000) as the pore‐forming agents. In addition, a preliminary study on the controlled release of bovine serum albumin from these macroporous hydrogels was carried out. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 152–159, 2003  相似文献   

12.
Poly(ethylene glycol) (PEG)‐diallyls, ranging from 2 to 8 kDa, were successfully reacted with a trifunctional thiol crosslinker via thiol–ene coupling reaction to construct four different primary PEG hydrogels. These systems were used as scaffolds for the preparation of a library of sequential interpenetrating networks (SeqIPNs). The solid content of the secondary networks varied between 21 and 34% and was dependent on the length of the absorbing PEGs. The gel fractions for the IPNs were above 85%. Additionally, the lowest degree of swelling was found for the IPN based on 2‐kDa PEG (315%), whereas the 8‐kDa PEG IPN exhibited a value of 810%. The SeqIPN strategy facilitated hydrogel systems that cover a larger domain of tensile modulus (192–889 kPa) when compared with single hydrogel networks (175–555 kPa). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Antibacterial hydrogels containing quaternary ammonium (QA) groups were prepared via a facile thiol‐ene “click” reaction using multifunctional poly(ethylene glycol) (PEG). The multifunctional PEG polymers were prepared by an epoxy‐amine ring opening reaction. The chemical and physical properties of the hydrogels could be tuned with different crosslinking structures and crosslinking densities. The antibacterial hydrogel structures prepared from PEG Pendant QA were less well‐defined than those from PEG Chain‐End QA. Furthermore, functionalization of the PEG‐type hydrogels with QA groups produced strong antibacterial abilities against Staphylococcus aureus, and therefore has the potential to be used as an anti‐infective material for biomedical devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 656–667  相似文献   

14.
Poly(ethylene glycol) (PEG)‐containing quasi‐model amphiphilic polymer conetworks (APCNs) were prepared by reversible addition fragmentation chain transfer (RAFT) polymerization using α,ω‐bis(2‐cyanoprop‐2‐yl dithiobenzoate)‐PEG as a bifunctional RAFT macrochain transfer agent (macro‐CTA) and stepwise additions of a hydrophobic monomer and a crosslinker (crosslinker: macro‐CTA = 10:1, reaction time 24 h). Three different types of monomers, methyl methacrylate (MMA), n‐butyl acrylate and styrene, were employed as the hydrophobic monomers, whereas ethylene glycol dimethacrylate, ethylene glycol diacrylate and 1,4‐divinylbenzene served as the respective crosslinkers. PEG homopolymer hydrophilic quasi‐model networks were also prepared by RAFT‐polymerizing the three crosslinkers directly onto the two active ends of the PEG‐based macro‐CTA. From the three ABA triblock copolymers prepared, the MMA‐containing one was obtained at the highest polymerization yields. The crosslinking yields of the three ABA triblock copolymers with the corresponding crosslinkers were higher than those of the PEG‐based macro‐CTA with the same crosslinkers. The degrees of swelling (DSs) of all conetworks were measured in water and in tetrahydrofuran (THF). The DSs of the APCNs in THF were higher than those in water, whereas the reverse was true for the DSs of the hydrophilic homopolymer networks. Finally, the aqueous DSs of the APCNs were lower than those of the corresponding hydrophilic homopolymer networks. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7556–7565, 2008  相似文献   

15.
Temperature‐responsive hydrogels are one of the most widely studied types of stimuli‐responsive hydrogel systems. Their ability to transition between their swollen and collapsed states makes them attractive for controlled drug delivery, microfluidic devices, and biosensor applications. Recent work has shown that poly(ethylene glycol) (PEG) methacrylate polymers are temperature‐responsive and exhibit a wide range of lower critical solution temperatures based on the length of ethylene glycol units in the macromer chain. The addition of iron oxide nanoparticles into the hydrogel matrix can provide the ability to remotely heat the gels upon exposure to an alternating magnetic field (AMF). In this work, diethylene glycol (n = 2) methyl ether methacrylate and PEG (n = 4.5) methyl ether methacrylate copolymers were polymerized into hydrogels with 5 mol % PEG 600 (n = 13.6) dimethacrylate as the crosslinker along with 5 wt % iron oxide nanoparticles. Volumetric swelling studies were completed from 22 to 80 °C and confirmed the temperature‐responsive nature of the hydrogel systems. The ability of the gels to collapse in response to rapid temperature changes when exposed to an AMF was demonstrated showing their potential use in biomedical applications such as controlled drug delivery and hyperthermia therapy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3229–3235, 2010  相似文献   

16.
A series of novel biodegradable hydrogels were designed and synthesized from four types of unsaturated poly(ester amide) (UPEA) and poly(ethylene glycol) diacrylate (PEG‐DA) precursors by UV photocrosslinking. These newly synthesized biodegradable UPEA/PEG‐DA hydrogels were characterized by their gel fraction (Gf), equilibrium swelling ratio (Qeq), compressive modulus, and interior morphology. The effect of the precursor feed ratio (UPEAs to PEG‐DA) on the properties of the hydrogels was also studied. The incorporation of UPEA polymers into the PEG‐DA hydrogels increased their hydrophobicity, crosslinking density (denser network), and mechanical strength (higher compressive modulus) but reduced Qeq. When different types of UPEA precursors were coupled with PEG‐DA at the same feed ratio (20 wt %), the resulting hydrogels had similar Qeq values and porous three‐dimensional interior morphologies but different Gf and compressive modulus values. These differences in the hydrogel properties were correlated to the chemical structures of the UPEA precursors; that is, the different locations of the >C?C< double bonds in individual UPEA segments resulted in their different reactivities toward PEG‐DA to form hydrogels. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3932–3944, 2005  相似文献   

17.
A pH and reduction dual‐stimuli‐responsive PEGDA/PAMAM injectable network hydrogel containing “acetals” as pH‐sensitive groups and “disulfides” as reducible linkages was designed and synthesized via aza‐Michael addition reaction between PAMAM and PEGDA diacrylates. The pore size and swelling ratio of hydrogels was varied from 14 ± 3 to 19 ± 4 μm and 214 ± 13 to 300 ± 19 μm, respectively, with varying ethylene glycol repeating units in diacrylates. The swelling ratio of PEGDA/PAMAM network hydrogel increased with increase in the molecular weight of PEG and with decrease in pH. The presence of different cationizable amino‐functionalities in PEGDA/PAMAM network hydrogel helped to enhance the swelling ability of hydrogel under the acidic conditions. The continuous increase in metabolically active live HeLa cells with time in MTT assay implied biocompatibility/noncytotoxicity of the synthesized PEGDA/PAMAM injectable network hydrogel. Furthermore, the prepared PEGDA/PAMAM hydrogel showed higher degradation at lower pH and at higher concentration of DTT. The burst release of doxorubicin from PEGDA/PAMAM hydrogel under the environment of the lower pH and in presence of DTT compared to the release at normal physiological pH and in absence of DTT suggested the potential ability of this model hydrogel system for targeted and selective anticancer drug release at tumor tissues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2080–2095  相似文献   

18.
Copolymers of methacrylic acid (MAA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were prepared and their cloud points in aqueous solution were studied as a function of comonomer ratio, solution pH, and presence of hydrophobic comonomers. Under acidic conditions, the cloud point falls below 0 °C for copolymers with between 25% to 60% ether content, because of the formation of hydrophobic H‐bonded ether–acid complexes. The cloud point also decreases with solution pH. For equivalent ether to acid ratios, the cloud point decreases with decreasing PEG chain length, because of the presence of a larger number of hydrophobic methyl and methacrylate groups. Similarly, the cloud point decreases upon incorporation of hydrophobic comonomers such as butyl, lauryl, or glycidyl methacrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6095–6104, 2005  相似文献   

19.
We report the synthesis of poly N‐(2‐hydroxypropyl)methacrylamide ordered arrays of fluid filled channels. The polymerization and crosslinking reactions are carried out under the influence of a constant electric field (60 V/cm). A charged comonomer, immobiline (pK 3.6), and porogen, polyethylene glycol (PEG) are added to the pregel solutions. Scanning electron microscopy reveals that the channels have a typical diameter of 2–25 μm and are oriented parallel to the electric field employed during synthesis. The self‐organization of channels occurs around an optimal PEG concentration of 8.6 wt/vol %, whereas significantly higher or lower concentrations yield random, isotropic pore structures. Moreover, tensile strength measurements show that the mechanical stability increases with decreasing concentration of PEG. Rheology experiments reveal that the swelling degree of these superabsorbant hydrogels increases with increasing PEG. Possible applications of these microstructured hydrogels as bidirectional scaffolds for regenerating neurons in the injured spinal cord are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2593–2600, 2007  相似文献   

20.
The ability of hydrogels based on acrylate derivatives of polyethylene glycol (PEG) with different ratios of monomers to swell and degrade, as well as their behavior during heating, have been explored. The possibility to control the swelling and degradation processes in the model medium by varying the ratio of PEG-methacrylate (PEGMA) and PEG-diacrylate (PEGDA) monomers was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号