首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

2.
Two enantiomeric amphiphilic graft copolymers consisting of water soluble poly(2‐hydroxyethyl methacrylate) (HEMA) and biodegradable oligo(L ‐lactide) (OLLA) or oligo(D ‐lactide) (ODLA) were synthesized by free radical copolymerization. HEMA‐OL(D)LA macromonomers were synthesized by ring opening polymerization of L ‐ or D ‐lactide. Both HEMA‐OLA macromonomers and graft copolymers were characterized by NMR spectroscopy and gel permeation chromatography. Graft copolymers and their stereocomplexes were analyzed by wide angle X‐ray diffraction and differential scanning calorimetry (DSC). Due to the formation of stereocomplex crosslinks between poly(HEMA) main chains, amphiphilic, biodegradable hydrogels prepared by blending of two enantiomeric poly(HEMA‐g‐OLLA) and poly(HEMA‐g‐ODLA) degraded more slowly in phosphate buffered saline than individual optically pure poly‐(HEMA‐g‐OL(D)LA).  相似文献   

3.
Well‐defined poly(tert‐butyl methacrylate)‐graft‐poly (dimethylsiloxane) (PtBuMA‐g‐PDMS) graft copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) copolymerization of methacryloyl‐terminated poly (dimethylsiloxane) (PDMS‐MA) with tert‐butyl methacrylate (tBuMA) in ethyl acetate, using 2,2′‐azobis(isobutyronitrile) (AIBN) as the initiator and 2‐cyanoprop‐2‐yl dithiobenzoate as the RAFT agent. The RAFT statistical copolymerization of PDMS‐MA with tBuMA is shown to be azeotropic and the obtained PtBuMA‐g‐PDMS graft copolymers have homogeneously distributed branches because of the similar reactivity of monomers (rtBuMArPDMSMA ≈ 1). By the RAFT block copolymerization of PDMS‐MA with tBuMA, moreover, narrow molecular weight distribution (Mw/Mn < 1.3) PtBuMA‐g‐PDMS graft copolymers with gradient or blocky branch spacing were synthesized. The graft copolymers exhibit the glass transitions corresponding to the PDMS and PtBuMA phase, respectively. However, the arrangement of monomer units in copolymer chains and the length of PtBuMA moieties have important effects on the thermal behavior of PtBuMA‐g‐PDMS graft copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

5.
A series of poly(L ‐lysine)s grafted with aliphatic polyesters, poly(L ‐lysine)‐graft‐poly(L ‐lactide) (PLy‐g‐PLLA) and poly(L ‐lysine)‐graft‐poly(?‐caprolactone) (PLy‐ g‐PCL), were synthesized through the Michael addition of poly(L ‐lysine) and maleimido‐terminated poly(L ‐lactide) or poly(?‐caprolactone). The graft density of the polyesters could be adjusted by the variation of the feed ratio of poly(L ‐lysine) to the maleimido‐terminated polyesters. IR spectra of PLy‐g‐PCL showed that the graft copolymers adopted an α‐helix conformation in the solid state. Differential scanning calorimetry measurements of the two kinds of graft copolymers indicated that the glass transition temperature of PLy‐g‐PLLA and the melting temperature of PLy‐g‐PCL increased with the increasing graft density of the polyesters on the backbone of poly(L ‐lysine). Circular dichroism analysis of PLy‐g‐PCL in water demonstrated that the graft copolymer existed in a random‐coil conformation at pH 6 and as an α‐helix at pH 9. In addition, PLy‐g‐PCL was found to form micelles to vesicles in an aqueous medium with the increasing graft density of poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1889–1898, 2007  相似文献   

6.
Methylated and pegylated poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) copolymers, PLA–P(CL‐co‐CLCH3)–PLA and PLA–P(CL‐co‐CLPEG)–PLA, were prepared in three steps: combining the formation of carbanion‐bearing dihydroxylated‐PCL, the coupling of iodomethane or bromoacetylated α‐hydroxyl‐ω‐methoxy‐poly(ethylene glycol) onto the carbanionic PCL, and finally the ring opening polymerization of DL ‐lactide initiated by the preformed grafted diOH‐PCL copolymers. The resulting block copolymers exhibited lower crystallinity, melting temperature, and hydrophobicity with respect to the original PCL. Degradation of the grafted copolymers was investigated in the presence of Pseudomonas cepacia lipase and compared with that of the triblock copolymer precursor. It is shown that the presence of the grafted substituents affected the enzymatic degradation of PCL segments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4196–4205, 2005  相似文献   

7.
Among three cyclopentadienyl titanium complexes studied, CpTiCl2(OEt), containing a 5% excess CpTiCl3, has proven to be a very efficient catalyst for the ring‐opening polymerization (ROP) of L ‐lactide (LLA) in toluene at 130 °C. Kinetic studies revealed that the polymerization yield (up to 100%) and the molecular weight increase linearly with time, leading to well‐defined PLLA with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Based on the above results, PS‐b‐PLLA, PI‐b‐PLLA, PEO‐b‐PLLA block copolymers, and a PS‐b‐PI‐b‐PLLA triblock terpolymer were synthesized. The synthetic strategy involved: (a) the preparation of OH‐end‐functionalized homopolymers or diblock copolymers by anionic polymerization, (b) the reaction of the OH‐functionalized polymers with CpTiCl3 to give the corresponding Ti‐macrocatalyst, and (c) the ROP of LLA to afford the final block copolymers. PMMA‐g‐PLLA [PMMA: poly(methyl methacrylate)] was also synthesized by: (a) the reaction of CpTiCl3 with 2‐hydroxy ethyl methacrylate, HEMA, to give the Ti‐HEMA‐catalyst, (b) the ROP of LLA to afford a PLLA methacrylic‐macromonomer, and (c) the copolymerization (conventional and ATRP) of the macromonomer with MMA to afford the final graft copolymer. Intermediate and final products were characterized by NMR spectroscopy and size exclusion chromatography, equipped with refractive index and two‐angle laser light scattering detectors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1092–1103, 2010  相似文献   

8.
The simultaneous ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) and 2‐hydroxyethyl methacrylate (HEMA) polymerization via reversible addition fragmentation chain transfer (RAFT) chemistry and the possible access to graft copolymers with degradable and nondegradable segments is investigated. HEMA and ε‐CL are reacted in the presence of cyanoisopropyl dithiobenzoate (CPDB) and tin(II) 2‐ethylhexanoate (Sn(Oct)2) under typical ROP conditions (T > 100 °C) using toluene as the solvent in order to lead to the graft copolymer PHEMA‐g‐PCL. Graft copolymer formation is evidenced by a combination of size‐exclusion chromatography (SEC) and NMR analyses as well as confirmed by the hydrolysis of the PCL segments of the copolymer. With targeted copolymers containing at least 10% weight of PHEMA and relatively small PHEMA backbones (ca. 5,000–10,000 g mol?1) the copolymer grafting density is higher than 90%. The ratio of free HEMA‐PCL homopolymer produced during the “one‐step” process was found to depend on the HEMA concentration, as well as the half‐life time of the radical initiator used. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3058–3067, 2008  相似文献   

9.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

10.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Recent studies have demonstrated that gradient copolymers exhibit unique thermal properties. Although these properties can be determined by copolymer composition, other factors such as chain and sequence lengths and their distributions can also influence them. Accordingly, the synthesis of gradient copolymers requires simultaneously tailor‐made chain structure and thermal properties. In this work, we carried out a systematic study on the preparation of poly(methyl methacrylate‐grad‐2‐hydroxyethyl methacrylate) [poly(MMA‐grad‐HEMA)] with synchronously tailor‐made chain composition distribution and glass transition temperature (Tg) through semibatch atom transfer radical polymerization. First, a comprehensive model for simultaneously predicting gradient copolymer microstructure and Tg was presented using the concept of pseudo‐kinetic rate coefficients and Johnston equation. The model was validated by comparing simulation results with the classical reference data. Furthermore, the model was used to guide the experimental synthesis of the poly(MMA‐grad‐HEMA) gradient copolymers potentially as excellent damping material. The thermal properties of these gradient copolymer samples were evaluated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

13.
Water‐soluble poly(ester‐carbonate) having pendent amino and carboxylic groups on the main‐chain carbon is reported for the first time. This article describes the melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) at a wide range of molar fractions. The influence of reaction conditions such as catalyst concentration, polymerization time, and temperature on the number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the copolymers was investigated. The polymerizations were carried out in bulk at 110 °C with 3 wt % stannous octoate as a catalyst for 16 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, and gel permeation chromatography. The copolymers synthesized exhibited moderate molecular weights (Mn = 6000–14,700 g mol?1) with reasonable molecular weight distributions (Mw/Mn = 1.11–2.23). The values of the glass‐transition temperature (Tg) of the copolymers depended on the molar fractions of cyclic carbonate. When the MBC content decreased from 76 to 12 mol %, the Tg increased from 16 to 48 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐MBC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐MBC)s was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. Debenzylation of 3 by catalytic hydrogenation led to the corresponding linear poly(ester‐carbonate), 4 , with pendent amino and carboxylic groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2303–2312, 2004  相似文献   

14.
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006  相似文献   

15.
A straightforward strategy is proposed for the synthesis of novel, amphiphilic block–graft MPEG‐b‐(PαN3CL‐g‐alkyne) degradable copolymers. First, the ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) was initiated by hydroxy‐terminated macroinitiator monomethoxy poly(ethylene glycol) (MPEG) with SnOct2 as the catalyst. In a second step, pendent chlorides were converted into azides by the reaction with sodium azide. Finally, various kinds of terminal alkynes were reacted with pendent azides by copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition, and thus a “click” reaction. These copolymers were characterized by differential scanning calorimetry (DSC), 1H NMR, IR, and gel permeation chromatography. By fixing the length of the MPEG block and increasing the length of PαClCL (or PαN3CL) block, an increase tendency in Tgs was observed. However, the copolymers of MPEG‐b‐PαClCL and MPEG‐b‐PαN3CL were semicrystalline when the Mn of MPEG was above 2000 g mol?1. The block–graft copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 1.4–12.0 mg L?1 depending on the composition of polymers. The lengths of hydrophilic segment influence the shape of the micelle. The mean hydrodynamic diameters of the micelles from dynamic light scattering were in the range of 90–160 nm. In vitro hydrolytic degradation of block–graft copolymers is faster than the corresponding block copolymers. The drug entrapment efficiency and the drug loading content of micelles depending on the composition of block–graft polymers were described. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4320–4331, 2008  相似文献   

16.
Atom transfer radical polymerization with activators generated by electron transfer initiating/catalytic system (AGET ATRP) of 2‐hydroxyethyl methacrylate (HEMA) was carried out in inverse miniemulsion. Water‐soluble ascorbic acid as a reducing agent and mono‐ and difunctional poly(ethylene oxide)‐based bromoisobutyrate (PEO‐Br) as a macroinitiator were used in the presence of CuBr2/tris[(2‐pyridyl)methyl]amine (TPMA) and CuCl2/TPMA complexes. The use of poly(ethylene‐co‐butylene)‐block‐poly(ethylene oxide) as a polymer surfactant resulted in the formation of stable HEMA cyclohexane inverse dispersion and PHEMA colloidal particles. All polymerizations were well‐controlled, allowing for the preparation of well‐defined PEO‐PHEMA and PHEMA‐PEO‐PHEMA block copolymers with relatively high molecular weight (DP > 200) and narrow molecular weight distribution (Mw/Mn < 1.3). These block copolymers self‐assembled to form micellar nanoparticles being 10–20 nm in diameter with uniform size distribution, and aggregation number of ~10 confirmed by atomic force microscopy and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4764–4772, 2007  相似文献   

17.
A series of well‐defined amphiphilic star graft copolymers consisting of hydrophilic poly(acrylic acid) backbone and hydrophobic poly(propylene oxide) side chains were synthesized by the sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer nitroxide radical coupling (ATNRC) or single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction followed by the selective hydrolysis of poly(tert‐butyl acrylate) backbone. A Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate, was first homopolymerized via RAFT polymerization using a new star‐like chain‐transfer agent with four arms in a controlled way to give a well‐defined star‐like backbone with a narrow molecular weight distribution (Mw/Mn = 1.23). The grafting‐onto strategy was used to synthesize the well‐defined PtBA‐g‐PPO star graft copolymers with narrow molecular weight distributions (Mw/Mn = 1.14–1.25) via ATNRC or SET‐NRC reaction between the Br‐containing PtBA‐based star‐like backbone and poly(propylene oxide) with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl end group using CuBr/PMDETA or Cu/PMDETA as catalytic system. PAA‐g‐PPO amphiphilic star graft copolymers were obtained by the selective acidic hydrolysis of star‐like PtBA‐based backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media and brine were determined by the fluorescence probe technique. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2084–2097, 2010  相似文献   

18.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(22) 5845 New multiblock copolymers derived from poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) were prepared with the coupling reaction between PLLA and PCL oligomers with ? NCO terminals. Fourier transform infrared (FTIR), 13C NMR, and differential scanning calorimetry (DSC) were used to characterize the copolymers and the results showed that PLLA and PCL were coupled by the reaction between ? NCO groups at the end of the PCL and ? OH (or ? COOH) groups at the end of the PLLA. DSC data indicated that the different compositions of PLLA and PCL had an influence on the thermal and crystallization properties including the glass‐transition temperature (Tg), melting temperature (TM), crystallizing temperature (Tc), melting enthalpy (ΔHm), crystallizing enthalpy (ΔHc), and crystallinity. Gel permeation chromatography (GPC) was employed to study the effect of the composition of PLLA and PCL and reaction time on the molecular weight and the molecular weight distribution of the copolymers. The weight‐average molecular weight of PLLA–PCL multiblock copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL, whereas that of the homopolymer of PLLA was only 14,000. A polarized optical microscope was used to observe the crystalline morphology of copolymers; the results showed that all polymers exhibited a spherulitic morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5045–5053, 2004  相似文献   

19.
Poly(L ‐lactide) (PLLA) with terminal primary amino groups (PLLA‐NH2) was synthesized and used to construct PLLA‐grafted pullulan (Pul‐g‐PLLA). It consisted of a hydrophilic carboxymethyl Pul (CM‐Pul) main chain and hydrophobic PLLA graft chains that were created through a direct coupling reaction between PLLA‐NH2 and CM‐Pul using 2‐ethoxy‐1‐(ethoxycarbonyl)‐1,2‐dihydroquinoline as a condensation reagent. Pul‐g‐PLLAs with over 78 wt % sugar unit content were found to form nanometer‐sized aggregates in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5482–5487, 2004  相似文献   

20.
Degradable, amphiphilic graft copolymers of poly(ε‐caprolactone)‐graft‐poly(ethylene oxide), PCL‐g‐PEO, were synthesized via a grafting onto strategy taking advantage of the ketones presented along the backbone of the statistical copolymer poly(ε‐caprolactone)‐co‐(2‐oxepane‐1,5‐dione), (PCL‐co‐OPD). Through the formation of stable ketoxime ether linkages, 3 kDa PEO grafts and p‐methoxybenzyl side chains were incorporated onto the polyester backbone with a high degree of fidelity and efficiency, as verified by NMR spectroscopies and GPC analysis (90% grafting efficiency in some cases). The resulting block graft copolymers displayed significant thermal differences, specifically a depression in the observed melting transition temperature, Tm, in comparison with the parent PCL and PEO polymers. These amphiphilic block graft copolymers undergo self‐assembly in aqueous solution with the P(CL‐co‐OPD‐co‐(OPD‐g‐PEO)) polymer forming spherical micelles and a P(CL‐co‐OPD‐co‐(OPD‐g‐PEO)‐co‐(OPD‐gpMeOBn)) forming cylindrical or rod‐like micelles, as observed by transmission electron microscopy and atomic force microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3553–3563, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号