首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
M(CO)5X (M = Mn, Re; X = Cl, Br, I) reacts with DAB (1,4-diazabutadiene = R1N=C(R2)C(R2)′=NR′1) to give M(CO)3X(DAB). The 1H, 13C NMR and IR spectra indicate that the facial isomer is formed exclusively. A comparison of the 13C NMR spectra of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = glyoxalbis-t-butylimine, glyoxyalbisisopropylimine) and the related M(CO)4DAB complexes (M = Cr, Mo, W) with Fe(CO)3DAB complexes shows that the charge density on the ligands is comparable in both types of d6 metal complexes but is slightly different in the Fe-d8 complexes. The effect of the DAB substituents on the carbonyl stretching frequencies is in agreement with the A′(cis) > A″ (cis) > A′(trans) band ordering.Mn(CO)3Cl(t-BuNCHCHNt-Bu) reacts with AgBF4 under a CO atmosphere yielding [Mn(CO)4(t-BuNCHCHN-t-Bu)]BF4. The cationic complex is isoelectronic with M(CO)4(t-BuNCHCHNt-Bu) (M = Cr, Mo, W).  相似文献   

2.
The complex mer-trans-[Mn(CO)3{P(OMe)2Ph}2X] (X = Cl, Br) is an intermediate in the conversion of fac-[Mn(CO)3{P(OMe)2,Ph}2,X] into mer- cis-[Mn(CO)2{P(OMe)2Ph}3X] in the presence of P(OMe)2Ph in benzene. No direct route between the latter two complexes could be detected kinetically. The results imply a trans carbonyl disposition as a prerequisite for higher carbonyl substitution in octahedral Mn1 carbonyl complexes.  相似文献   

3.
Five new complexes, [M(CO)5(apmsh)] [M = Cr; (1), Mo; (2), W; (3)], [Re(CO)4Br(apmsh)] (4) and [Mn(CO)3(apmsh)] (5) have been synthesized by the photochemical reaction of metal carbonyls [M(CO)6] (M = Cr, Mo and W), [Re(CO)5Br], and [Mn(CO)3Cp] with 2-hydroxyacetophenone methanesulfonylhydrazone (apmsh). The complexes have been characterized by elemental analysis, mass spectrometry, f.t.-i.r. and 1H spectroscopy. Spectroscopic studies show that apmsh behaves as a monodentate ligand coordinating via the imine N donor atom in [M(CO)5(apmsh)] (1–4) and as a tridentate ligand in (5).  相似文献   

4.
The reactions of M(CO)5X ( M = Mn, Re; X = Cl, Br, I) with E2(CF3)4 (E = P, As) between 50 and 90°C yield binuclear complexes of the type M2(CO)8E(CF3)2X with two different bridging ligands, the formation of which is influenced by M (Mn > Re), E (P > As) , and X(I > Br > Cl). The main by-product is the symmetrical system M2(CO)8[E(CF3)2]2, which is however not formed by the partial replacement of X by E(CF3)2 since this reaction requires temperatures above 120°C. The observed products can be explained by a three-step reaction path starting with the cleavage of E2(CF3)4 followed by the subtitution of a cis-CO group in the M(CO)5X component by M(CO)5E(CF3)2 and the ring closure.  相似文献   

5.
The thermally stable solids Re2(CO)8[μ-InRe(CO)5]2 and Re4(CO)123-InRe(CO)5]4 could be obtained by treatment of In with Re2(CO)10 in a bomb tube. A mechanism of the formation of the latter cluster from the first one is proposed. Compared with Re2(CO)8[μ-InRe(CO)5]2, Re4(CO)123_InRe(CO)5]4 shows in polar solvents an unusual high stability, which can be explained by the higher coordination number of In with rhenium carbonyl ligands. Re4(CO)12-[μ3-InRe(CO)5]4 dissolves monomerically in acetone, where as Re2(CO)8[μ-InRe(CO)5]2 dissociates yielding Re(CO)5? anions. Single-crystal X-ray analyses of Re4(CO)123-InRe(CO)5]4 establish the metal skeleton. The central molecular fragment Re4(CO)12 contains a tetrahedral arrangement of four bonded Re atoms [ReRe 302.8 (5) pm]. The triangles of this fragment are capped with a μ3-InRe(CO)5 group each [InRe(terminal) 273.5 (7) pm; InRe (polyhedral) 281.8 (7) pm]. The bridging type of In atoms with the Re4 tetrahedron and the metal skeleton was realized for the first time. By treating Re4(CO)123-InRe(CO)5]4 with Br2 the existence of Re(CO)5 ligands could be proved by isolating BrRe(CO)5.  相似文献   

6.
Mn(CO)5M′(CO)3DAB complexes (M′ = Mn, Re; DAB = R1N=C(R2)-C(R′2)=NR1) can be easily obtained from the reaction between Mn(CO)5? and M′(CO)3X(DAB) (M′ = Mn, Re; X = Cl, Br, I). The complexes are formed by a nucleophilic mechanism, while a redistribution is responsible for the formation of a small amount of Mn2(CO)10.A diastereotopic effect can be observed in the 1H and 13C NMR spectra of complexes having isopropyl groups attached to the DAB ligand skeleton. A comparison is made with mononuclear complexes of the same symmetry, and the chemical shift differences for the methyl groups strongly depend on the substituent on the central metal responsible for the asymmetry.The low temperature enhancement of the σ → σ transition localised on the metal—metal bond, which is normally observed for this type of compounds, was not observed for the Mn(CO)5M′(CO)3(DAB) complexes. The metal—metal bond can be activated by irradiating at the wave lengths associated with the CT transitions between the metal and the DAB ligand. Metal—metal bond cleavage occurs and Mn2(CO)10 is formed.  相似文献   

7.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

8.
Five new complexes, [M(CO)5(salmsh)] (M?=?Cr;?1,?Mo;?2,?W;?3), [Re(CO)4Br(salmsh)], 4, and [Mn(CO)3 (salmsh)], 5, have been synthesized by the photochemical reaction of metal carbonyls with salicylaldehyde methanesulfonylhydrazone (salmsh). The complexes have been characterized by elemental analyses, EI mass spectrometry, FT-IR and 1H NMR spectroscopy. The spectroscopic studies show that salmsh behaves as a monodentate ligand coordinating via the imine N donor atom in 14 and as a tridentate ligand in 5.  相似文献   

9.
Three monocationic rhenium(I) complexes of the type [Re(CO)3(L)]Br, containing the bis-imidazole tridentate ligands bis-(2-(1-methylimidazolyl)methyl)amine (L1), bis-(2-(1-methylimidazolyl)methyl)aminoethanol (L2) and bis-(2-(benzimidazolyl)ethyl)sulfide (L3), were prepared and characterized by 1H NMR and IR spectroscopy. The complex salt [Re(CO)3(L2)]Br (2) was also characterized by X-ray crystallography. The structure consists of discrete monocationic monomers with a fac-[Re(CO)3]+ coordination unit, and the remaining three sites are occupied by one amine and two imidazolyl nitrogen donor atoms.  相似文献   

10.
The heteronuclear Cp2Nb(CO)(μ-CO)Mn(CO)4 (I), Cp2Nb(CO)(μ-H)Ni(CO)3 (II) and [Cp2Nb(CO)(μ-H)]2M(CO)4 (III, M = Mo;IV, M = W) complexes were prepared by reaction of Cp2NbBH4/Et3N with Mn2(CO)10 in refluxing toluene, direct reaction of Cp2NbBH4 with Ni(CO)4 in ether, and reaction of Cp2NbBH4/Et3N with M(CO)5. THF complexes (M = Mo or W) in THF/benzene mixture. An X-ray investigation of compounds I–III was performed. It is established that in I the bonding between Mn(CO)5 and Cp2Nb(CO) (with the angle (α) between the ring planes being 44.2(5)°) fragments takes place via a direct NbMn bond (3.176(1) Å) and a highly asymmetric carbonyl bridge (MnCco 1.837(5) Å, NbCco 2.781(5) Å). On the other hand, in complex II the sandwich Cp2Nb(CO)H molecule (angle α = 37.8°) is combined with the Ni(CO)3 group generally via a hydride bridge (NbH 1.83 Å, NiH 1.68 Å, NbHNi angle 132.7°) whereas the large Nb?Ni distance, 3.218(1) Å, shows the weakening or even absence of the direct NbNi bond. Similarly, in complex III two Cp2Nb(CO)H molecules (with α angles equal to 41.4 and 43.0°, respectively) are joined to the Mo(CO)4 group via the hydride bridges (NbH 1.83 and 1.75 Å and MoH 2.04 and 2.06 Å) producing a cis-form. The direct NbMo bonds are probably absent, since the Nb?Mo distances are rather long (3.579 and 3.565 Å). The effect of electronic and steric factors on the structure of heteronuclear niobocene carbonyl derivatives is discussed.  相似文献   

11.
The seven-coordinate rhenium(III) complex cation [ReIII(dhp)(PPh3)2]+ was isolated as the iodide salt from the reaction of cis-[RevO2I(PPh3)2] with 2,6-bis(2-hydroxyphenyliminomethyl)pyridine (H2dhp) in ethanol. In the complex fac-[Re(CO)3(H2dhp)Br], prepared from [Re(CO)5Br] and H2dhp in toluene, the H2dhp ligand acts as a neutral bidentate N,N-donor chelate. The complexes were characterized by elemental analysis, infrared and 1H NMR spectroscopy and X-ray crystallography.  相似文献   

12.
A series of rhenium(I) tricarbonyl complexes, containing bidentate derivatives of aniline, was synthesized and structurally characterized. With 1,2-diaminobenzene (Hpda) the ‘2+1’ complex salt fac-[Re(CO)3(Hpda)2]Br was isolated. The neutral complex [Re(CO)3(Hapa)Br] was formed with 2-aminodiphenylamine (Hapa) as ligand. 2-Aminophenol (Hopa) also produced the neutral ‘2+1’ complex [Re(CO)3(opa)2(Hopa)], but with 2-mercaptophenol (Hspo) the bridged dimer [Re2(CO)7(spo)2] was found. In the complex [Re(CO)3(Htpn)Br] (Htpn = N′-{(2-methylthio)benzylidene}benzene-1,2-diamine) the potentially tridentate ligand Htpn is coordinated via the methylthio sulfur and imino nitrogen atoms only, with a free amino group.  相似文献   

13.
Photolysis of [M(CO)5M′(CO)3(dab)] (M, M′ = Mn, Re; dab = 1,4-diazabuta-1,3-diene, RNCHCHNR) in 2-Me-THF leads to both homolytic and heterolytic splitting of the metalmetal bond depending on the solution temperature. In a rigid medium such as a CH4-matrix no breaking of the metalmetal bond is observed but instead formation of [M(CO)3M′(CO)3(dab)] in which compound the dab-ligand is σ,σ,π,π bridging between M and M′.  相似文献   

14.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

15.
Complete geometry optimizations were carried out by HF and DFT methods to study the molecular structure of binuclear transition-metal compounds (Cp(CO)3W(μ-PPh2)W(CO)5) (I) and (Cp(CO)2W(μ-PPh2)W(CO)5) (II). A comparison of the experimental data and calculated structural parameters demonstrates that the most accurate geometry parameters are predicted by the MPW1PW91/LANL2DZ among the three DFT methods. Topological properties of molecular charge distributions were analyzed with the theory of atoms in molecules. (3, −1) critical points, namely bond critical point, were found between the two tungsten atoms, and between W1 and C10 in complex II, which confirms the existence of the metal–metal bond and a semi-bridging CO between the two tungsten atoms. The result provided a theoretical guidance of detailed study on the binuclear phosphido-bridged complex containing transition metal–metal bond, which could be useful in the further study of the heterobimetallic phosphido-bridged complexes.  相似文献   

16.
17.
Treatment of MBr(CO)5 (M = Mn or Re) with AgClO4 and an organonitrile in a suitable solvents affords the complexes fac-[M(CO)3(NCR)3][ClO4], (R = Et, Pr or PhCH2). The use of these complexes as synthetic precursors has been illustrated by the preparation of fac-[M(CO)3L3][ClO4], (M = Mn, L = NH3 or L3 = dien; M = Re, L3 = triphos). Pure fac-[Re(CO)3(NH3)3][ClO4] could not be prepared using this nitrile displacement route, but may be isolated, as the PF6? salt, from the reaction of [Re(CO)3(toluene)][PF6] and ammonia in chloroform.  相似文献   

18.
The photoinduced synthesis and spectroscopic properties of the new mixed metal compound [Mn3Re(CO)12(SC6H5)4] by UV irradiation of a mixture of Mn2(CO)10, Re2(CO)10 with S2(C6H5)2 is described. No mixed sulphur/selenium compounds [M4(CO)12SnSe4?n(C6H5)4] (M = Mn or Re, n = 1–3) could be obtained by analogous photoreactions.  相似文献   

19.
The Raman and infrared spectra (4000200 cm?1) of (C4H4P)Mn(CO)3 and (C4D4P)Mn(CO)3, and of [C4H2(CH3)2P]Mn(CO)3 and [C4D2(CH3)2P]Mn(CO)3 in the liquid and solid states (10–400 K) have been investigated. A complete vibrational assignment is proposed and valence force fields of the (C5H5) and (C4H4P) cycles are compared. From these results, it is clearly shown that the (C4H4P) rings are more electrophilic and weaker π-electron donors than (C5H5) rings, this is in agreement with their chemical behavior.  相似文献   

20.
The radical Mn(CO)5 is generated by the photolysis of HMn(CO)5 in a low temperature solid CO matrix. It is characterized by IR spectroscopy, including isotopic studies, and it is shown to have a visible absorption band at ~ 800 nm, close to that assigned to Mn(CO)5 in room-temperature studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号