首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly accurate valence internally contracted multireference configuration interaction (MRCI) approach has been employed to investigate the potential energy curves (PECs) for the X2Π, b4Σ?, C2Σ? states of PO and the X1Σ+ state of PO+. For these electronic states, the spectroscopic parameters of the isotopes (P16O, P18O, P16O+, and P18O+) have been determined and compared with those of the investigations reported in the literature. The comparison shows that excellent agreement exists between the present results and the available experiments. With the PECs determined here, the first 30 vibrational states for P16O(X2Π, b4Σ?), P18O(X2Π, b4Σ?), P16O+(X1Σ+), and P18O+(X1Σ+) are computed when the rotational quantum number J equals zero (J = 0). The vibrational level G(υ), inertial rotation constant Bυ and centrifugal distortion constant Dυ are determined when J = 0. All the results of vibrational states except for P16O (X2Π) are reported for the first time. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
Third-order Møller–Plesset perturbation theory (MP 3) with a 6-31G** basis set was applied to study the relative stabilities of H+(X)2 conformations (X ? CO and N2) and their clustering energies. The effect of both basis set extensions and electron correlation is not negligible on the relative stabilities of the H+(CO)2 clusters. The most stable conformation of H+(CO)2 is found to be a Cv structure in which a carbon atom of CO bonds to the proton of H+(CO), whereas that of H+(N2)2 is a symmetry Dh structure. The second lowest energy conformations of H+(CO)2 and H+(N2)2 lie within 2 kcal/mol above the energies of the most stable structures. Clustering energies computed using MP 3 method with the 6-31G** basis set are in good agreement with the experimental findings of Hiraoka, Saluja, and Kebarle. The low-lying singlet conformations of H+(X)3 (X ? CO and N2) have been studied by the use of the Hartree–Fock MO method with the 6-31G** basis set and second-order Møller–Plesset perturbation theory with a 4-31G basis set. The most stable structure is a T-shaped structure in which a carbon atom of CO (or a nitrogen atom of N2) attacks the proton of the most stable conformation of H+(X)2 clusters.  相似文献   

3.
OH自由基的高精度量子化学研究   总被引:6,自引:0,他引:6  
采用内收缩MRCI方法(Internally Contracted Multiconfiguration-Reference Configuration Interaction)研究了OH自由基, 计算得到其基态稳定构型的键长是0.09708 nm, 对应的实验值是0.096966 nm, 第一激发态的键长是0.10137 nm,实验值是0.10121 nm. 同时得到势能曲线PECs (Potential Energy Curve), 再分别由Murrell-Sorbie势能函数拟合计算和POLFIT程序计算得到OH自由基在基态X2Π和第一激发态A2Σ+时的光谱数据:平衡振动频率ωe, 非谐性常数ωeχe以及高阶修正ωeYe, 平衡转动常数Be, 振转耦合系数αe, 解离能D0和垂直跃迁能量ν00. 这些理论计算结果与最新的实验值非常吻合, 精确度比前人也有很大提高. 其中我们计算得到基态OH(X2Π)的解离能D0=35568.86 cm-1, 第一激发态OH (A2Σ+)的解离能D0=18953.93 cm-1, 从第一激发态A2Σ+ (ν=0)到基态X2Π (v=0)的垂直跃迁能ν00=32496.42 cm-1.  相似文献   

4.
A new method is introduced for the optimization of nonorthogonal virtual orbitals for use in general multiconfiguration spin-coupled wave functions. The use of a number of highly effective approximations greatly reduces the computational effort involved, the most important being the use of a second-order perturbation expression for the energy and an approximate expression for the elements of the Hessian. As a result, the overall scheme scales very favourably with respect to the numbers of active electrons and of basis functions, making it suitable for the accurate study of large systems. Benchmark calculations are presented for the dissociation of LiH(X1Σ+) and Li2(X1Σ+ g ) using a highly compact four-configuration wave function. Standard spin-coupled valence bond expansions in the same virtual space are required to be significantly larger before equivalent results are obtained. The results are shown to compare very favourably with full valence complete active space self-consistent field calculations using an identical basis, and binding energies are within 4% of the values obtained from full configuration interaction calculations in the same basis set. Received: 10 June 1997 / Accepted: 7 October 1997  相似文献   

5.
A global potential energy surface (PES) corresponding to the ground state of AuH2 system has been constructed based on 22 853 ab initio energies calculated by the multireference configuration interaction method with a Davidson correction. The neural network method is used to fit the PES, and the root mean square error is only 1.87 meV. The topographical features of the novel global PES are compared with previous PES which is constructed by Zanchet et al. (Zanchet PES). The global minimum energy reaction paths on the two PESs both have a well and a barrier. Relative to the Au + H2 reactants, the energy of well is 0.316 eV on the new PES, which is 0.421 eV deeper than Zanchet PES. The calculation of Au(2S) + H2(X1Σg+) → AuH(X1Σ+) + H(2S) dynamical reaction is carried out on new PES, by the time‐dependent quantum wave packet method (TDWP) with second order split operator. The reaction probabilities, integral cross‐sections (ICSs) and differential cross‐sections are obtained from the dynamics calculation. The threshold in the reaction is about 1.46 eV, which is 0.07 eV smaller than Zanchet PES due to the different endothermic energies on the two PESs. At low collision energy (<2.3 eV), the total ICS is larger than the result obtained on Zanchet PES, which can be attributed to the difference of the wells and endothermic energies.  相似文献   

6.
Theoretical potential energy curves are computed for the X 2Σ+ and A 2Π states of CsO using a relativistic effective core potential and a large valence Gaussian basis set. Seventeen electrons are correlated by a CI (SD ) calculation from each HF reference. We find the X 2Σ+ state lower by 497 and 726 cm?1 at the HF and CI(SD) levels. Our calculated ωe of 312 cm?1 for the X 2Σ+ state agrees well with experimental values deduced from studies in matrices.  相似文献   

7.
李跃勋  高涛  朱正和 《中国化学》2006,24(10):1321-1326
Using the density functional method B3LYP with relativistic effective core potential(RECP)for Pu atom,thelow-lying excited states(~4Σ~ ,~6Σ~ ,~8Σ~ )for three structures of PuOH molecule were optimized.The results showthat the ground state is X~6Σ~ of the linear Pu-O-H(C_(∞v)),its corresponding equilibrium geometry and dissociationenergy are R_(Pu-O)=0.20595 nm,R_(O-H)=0.09581 nm and —8.68 eV,respectively.At the same time,two other me-tastable structures [PuOH(C_s)and H-Pu-O(C_(∞v)] were found.The analytical potential energy function has alsobeen derived for whole range using the many-body expansion method.This potential energy function represents theconsiderable topographical features of PuOH molecule in detail,which is adequately accurate in the whole potentialsurface and can be used for the molecular reaction dynamics research.  相似文献   

8.
The structure and spectroscopic properties of the ground and the lowest excited electronic states of the alkali hydride cation NaH+ have been investigated using an ab initio approach. In this approach, a nonempirical pseudopotential for the Na+ core has been used and a core–core and a core‐valence correlation corrections have been added. The adiabatic potential energy curves and the molecular spectroscopic constants for numerous electronic states of 2Σ+, 2Π, and 2Δ symmetries, dissociating up to Na (4d) + H+ and Na+ + H (3d), have been calculated. As no experimental data are available, we discuss our results by comparing with the available theoretical calculations. A satisfying agreement has been found for the ground state with previous works. However, a clear disagreement between this study and the model potential work of Magnier (Magnier, J. Phys. Chem. A 2005, 109, 5411) has been observed for several excited states. Numerous avoided crossings between electronic states of 2Σ+ and 2Π symmetries have been found and analysed. They are related to the interaction between the potential energy curves and to the charge transfer process between the two ionic systems Na+H and NaH+. Furthermore, we provide an extensive set of data concerning the transition dipole moments from X2Σ+ and the 22Σ+ states to higher excited states of 2Σ+ and 2Π symmetries. Finally, the adiabatic potential energy curves of the ground (X2Σ+) and the first (22Σ+) excited states and the transition dipole moments between these states are used to evaluate the radiative lifetimes for the vibrational levels of the 22+ state for the first time. In addition to the bound–bound contribution, the bound‐free term has been evaluated and added to the total radiative lifetime. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Some low‐lying states of HAlO+ and HOAl+ cations have been studied using the complete‐active‐space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods with the contracted atomic natural orbital (ANO) basis sets. The geometries of all stationary points along the potential energy surfaces were optimized at the CASSCF/ANO and CASPT2/ANO levels. The ground and the first excited states of HAlO+ are predicted to be X2Π and A2Σ+ states, respectively. It was predicted that the ground state of HOAl+ is X2Σ+ state. The A2Π state of HOAl+ has unique imaginary frequency. A bent local minimum M1 was found along the 12A″ potential energy surface, and the A2Π state of HOAl+ should be the transition state of the isomerization reactions for M1 ? M1. The CASPT2/ANO potential energy curves of isomerization reactions were calculated as a function of HAlO bond angle. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
The potential energy curves and spectroscopic constants of the ground and many excited states of the FrAr van der Waals system have been determined using a one‐electron pseudopotential approach. The Fr+ core and the electron–Ar interactions are replaced by effective potentials. The Fr+Ar core–core interaction is incorporated using the accurate CCSD(T) potential of Hickling et al. (Phys. Chem. Chem. Phys. 2004, 6, 4233). This approach reduces the number of active electrons of the FrAr van der Waals system to only one valence electron, which permits the use of very large basis sets for the Fr and Ar atoms. Using this technique, the potential energy curves of the ground and many excited states are calculated at the self consistent field (SCF) level. In addition, the spin–orbit interaction is also considered using the semiempirical scheme for the states dissociating into Fr (7p) and Fr (8p). The FrAr system is not studied previously and its potential interactions, spectroscopic constants and dipole functions are presented here for the first time. Furthermore, we have predicted the X2Σ+A2Π1/2, X2Σ+AΠ3/2, X2Σ+B2Σ1/2+, X2Σ+–32Π1/2, X2Σ+–32Π3/2, and X2Σ+–52Σ1/2+ absorption spectra. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Complete basis set and Gaussian‐n methods were combined with Barone and Cossi's implementation of the polarizable conductor model (CPCM) continuum solvation methods to calculate pKa values for six carboxylic acids. Four different thermodynamic cycles were considered in this work. An experimental value of ?264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of ?6.28 kcal/mol, to calculate pKa values with cycle 1. The complete basis set gas‐phase methods used to calculate gas‐phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed‐phase free energies are slightly less accurate than the gas‐phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. Thermodynamic cycles that include an explicit water in the cycle are not accurate when the free energy of solvation of a water molecule is used, but appear to become accurate when the experimental free energy of vaporization of water is used. This apparent improvement is an artifact of the standard state used in the calculation. Geometry relaxation in solution does not improve the results when using these later cycles. The use of cycle 1 and the complete basis set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

12.
To investigate the electron correlation effect on the binding energies of very weakly bound complexes at highly correlated levels, an extrapolation scheme exploiting the convergent behavior of the binding energy differences between two correlation levels with the correlation-consistent basis set aug-cc-pVXZ was explored. The scheme is based on extrapolating the binding energy differences between the lower and higher correlation levels (such as second-order Møller–Plesset perturbation theory and the single and double coupled-cluster method with perturbative triple correction level), CCSD(T), by X–3 for relatively small basis set calculations to estimate the corresponding basis set limit, which is then added to the complete basis set(CBS) limit binding energy at the lower correlation level to derive the CBS limit binding energy at the higher level. Test results on rare-gas dimers Rg2 (Rg is He, Ne, Ar) show that the CCSD(T) CBS limit binding energies estimated by this scheme with aug-cc-pVXZ and aug-cc-pV(X+1)Z basis sets are more accurate than the CBS limit estimated by direct extrapolation of correlation energies by X–3 with aug-cc-pV(X+1)Z and aug-cc-pV(X+2)Z basis sets in most cases, which signifies the utility of the proposed extrapolation scheme as the level of electron correlation treatment increases. The nonnegligible discrepancy in the well depth near equilibrium between the experimental and the full connected single, double, and triple coupled-cluster method CBS limit estimate obtained by this procedure in the case of Ar2 suggests that the previous semiempirical potential may be too attractive near equilibrium compared with the actual one.Acknowledgement The major portion of this work was carried out while the author was visiting the Quantum Theory Project (QTP) at the University of Florida. The author is thankful to Rodney Bartlett for hospitality and support during the visit. The author is also thankful to Ajith Perera for assistance in using the ACESII program package. Computational support from the QTP at the University of Florida and the Institute for Basic Science at Ajou University is gratefully acknowledged.  相似文献   

13.
Absolute emission cross sections have been determined for electron impact on CO, NO and N2. For the CO(A 1ΠX 1Σ+) and N2(a 1ΠX 1Σg) radiation our data is in good agreement with that of other groups. For CO+ (B2Σ+X2Σ+) the values of the emission cross sections are different from those measured previously. This discrepancy is explained in terms of an inadequate straylight correction in the former experiments. For the NO(A2Σ+X2Π) emission no previous σem values are known to the authors. Furthermore the electronic transition moments of the NO(A2Σ+X2Π) and CO+(B2ΣX2Σ+) systems have been measured and are found to be independent of the internuclear distance.  相似文献   

14.
The HMgO and magnesium monohydroxide (HOMg) have been reinvestigated using the complete active space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods with the contracted atomic natural orbital (ANO) basis sets. The geometries of all stationary points along the potential energy surfaces (PESs) were optimized at the CASSCF/ANO levels. The ground and the first excited states of HMgO are predicted to be X2Π and A2Σ+ states, respectively. It was predicted that the ground state of HOMg is X2Σ+ state. The A2Π state of HOMg has unique imaginary frequency. A bent local minimum M1 was found for the first time along the 12A″ PES and the A2Π state of HOMg should be the transition state of the isomerization reactions for M1 ? M1. The CASPT2/ANO potential energy curves of isomerization reactions were calculated as a function of HMgO bond angle. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

15.
Some low‐lying states of the HAlS+ and HSAl+ cations have been studied for the first time by large‐scale theoretical calculations using three methods: complete active space self‐consistent field (CASSCF), complete active second‐order perturbation theory (CASPT2), and density functional theory Becke's three‐parameter hybrid function with the nonlocal correlation of Lee–Yang–Parr (B3LYP) with the contracted atomic natural orbital (ANO‐L) and cc‐pVTZ basis sets. The geometries of all stationary points along the potential energy surfaces (PESs) were optimized at the CASSCF/ANO‐L and B3LYP/cc‐pVTZ levels. The ground and the first excited states of linear HAlS+ are predicted to be X2Π and A2Σ+ states, respectively. For the linear HSAl+ structure, the first excited state is A2Σ+. The X2Π state of linear HSAl+ is a second‐order saddle point, because it has two imaginary frequencies. Two bent global minima M1 and M2 were found along the 12A′ and 12A″ PESs, respectively. The CASPT2/ANO‐L potential energy curves of isomerization reactions were calculated as a function of HAlS bond angle. According to our calculations, the ground‐state HAlS+ is linear, whereas the ground‐state HSAl+ is bent. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
Coupled channel calculations of integral cross sections for rotational and vibrational excitation of H2(X1Σ+g by collision with Li+ are reported for 1.2 eV in the c.m. system employing an ab initio potential energy surface and numerical vibration—rotation functions of the Koo?s—Wolniewicz potential function including adiabatic correction. Pure rotational excitation is found to strongly dominate the inelastic scattering occurring at this energy. Preparation of H2 in various allowed non-zero rotational states is seen to enhance the 0 → 1 vibrational cross section by approximately an order of magnitude.  相似文献   

17.
The potential energy curves (PECs) of eight low‐lying electronic states (X1Σ+, a3Π, a′3Σ+, d3Δ, e3Σ?, A1Π, I1Σ?, and D1Δ) of the carbon monoxide molecule have been studied by an ab initio quantum chemical method. The calculations have been performed using the complete active space self‐consistent field method, which is followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with the correlation‐consistent aug‐cc‐pV5Z basis set. The effects on the PECs by the core‐valence correlation and relativistic corrections are included. The way to consider the relativistic corrections is to use the third‐order Douglas–Kroll Hamiltonian approximation at the level of a cc‐pV5Z basis set. Core‐valence correlation corrections are performed using the cc‐pCVQZ basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are corrected for size‐extensivity errors by means of the Davidson modification (MRCI+Q). The spectroscopic parameters (De, Te, Re, ωe, ωexe, ωeye, Be, αe, and γe) of these electronic states are calculated using these PECs. The spectroscopic parameters are compared with those reported in the literature. Using the Breit–Pauli operator, the spin–orbit coupling effect on the spectroscopic parameters is discussed for the a3Π electronic state. With the PECs obtained by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations, the complete vibrational states of each electronic state have been determined. The vibrational manifolds have been calculated for each vibrational state of each electronic state. The vibrational level G(ν), inertial rotation constant Bν, and centrifugal distortion constant Dν of the first 20 vibrational states when the rotational quantum number J equals zero are reported and compared with the experimental data. Comparison with the measurements demonstrates that the present spectroscopic parameters and molecular constants determined by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations are both reliable and accurate. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The potential energy curve (PEC) for the ground state of AsP(X1Σ+) has been investigated by the highly accurate valence internally contracted multireference configuration interaction method in the Molpro2008 program package with the correlation consistent basis set. The PEC is fitted to the analytic Murrrell–Sorbie function (M–S function) from which the spectroscopic constants are determined. The present De, Be, αe, ωeχe, Re, and ωe values are of 4.2823 eV, 0.188622 cm?1, 0.000749 cm?1, 1.984427 cm?1, 2.0194 Å, and 598.60 cm?1, respectively. In addition, by numerically solving the radial Schrödinger equation of nuclear motion in the adiabatic approximation, the total of 96 vibration states is predicted when the rotational quantum number J = 0. The complete vibration levels, classical turning points, inertial rotation, and centrifugal distortion constants are reproduced. Comparison has been made with recent theoretical and experimental data. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

19.
Complete active space self‐consistent field (CASSCF) and complete active space second‐order perturbation theory (CASPT2) calculations in conjunction with the aug‐cc‐pVTZ basis set have been used to investigate the low‐lying electronic states of thiofulminic acid (HCNS), HCNS+, and HCNS?. The result of geometry optimization using CASPT2/aug‐cc‐pVTZ shows that theoretically determined geometric parameters and harmonic vibrational frequencies for the HCNS ground state X1Σ+(X1A′) are in agreement with previous studies. The ionization energies, the electron affinity energies, the adiabatic excitation energies, and vertical excitation energies have been calculated and the corresponding cation and anion states are identified. By calculating adiabatic electron affinity, the states of HCNS? have been identified to contain both π orbital states (X2A′ and 12A″) and dipole‐bond states (14A′ and 14A″). © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Configuration interaction and coupled cluster calculations are reported for He2 using various orbital basis sets of the d-aug-AVXZ type, with the results being extrapolated to the one electron basis set limit both with counterpoise and without counterpoise correction. A generalized uniform singlet- and triplet-pair extrapolation scheme has been utilized for such a purpose. Using appropriate corrections to mimic full configuration interaction, the energies were predicted in excellent agreement with the best available estimates. The results also suggest that extrapolation to the complete basis set limit may be a general alternative to the counterpoise correction that yields a more accurate potential energy while being more economical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号