首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Ethanol fermentation with Saccharomyces cerevisiae cells was performed in medium with different glucose concentrations. As the glucose content augmented from 200 to 250 g/L, the growth of the immobilized cells did not change while that of the free cells was reduced. At higher glucose concentration (300, 350, and 400 g/L), the cell proliferation significantly decreased and the residual sugar level sharply augmented for both the immobilized and free yeast. The specific growth rate of the immobilized cells was 27–65 % higher than that of the free cells, and the final ethanol concentration in the immobilized yeast cultures was 9.7–18.5 % higher than that in the free yeast cultures. However, the immobilized yeast demonstrated similar or slightly lower ethanol yield in comparison with the free yeast. High fermentation rate of the immobilized yeast was associated with low unsaturation degree of fatty acids in cellular membrane. Adsorption of S. cerevisiae cells on water hyacinth stem pieces in the nutritional medium decreased the unsaturation degree of membrane lipid and the immobilized yeast always exhibited lower unsaturation degree of membrane lipid than the free yeast in ethanol fermentation.  相似文献   

2.
Flocculation is a desirable property in industrial yeasts and is particularly important in the fuel ethanol industry because it provides a simple and cost-free way to separate yeast cells from fermentation products. In the present study, the effect of pH and lignocellulose-derived sugars on yeast flocculation was investigated using a flocculent Saccharomyces cerevisiae, MA-R4, which has been recombinantly engineered to simultaneously co-ferment glucose and xylose to ethanol with high productivity. The flocculation level of MA-R4 dramatically decreased at pH values below 3.0 during co-fermentation of glucose and xylose. Sedimentation and microscopic observation revealed that flocculation was induced in MA-R4 when it fermented glucose, a glucose/xylose mixture, or mannose, whereas attempts to ferment xylose, galactose, and arabinose led to the loss of flocculation. MA-R4 fermented xylose and galactose more slowly than glucose and mannose. Therefore, the various flocculation behaviors shown by MA-R4 should be useful in the control of ethanol fermentation processes.  相似文献   

3.
We investigated ethanol production from mixed sugar syrups. Hydrolysates were prepared from enzymatic saccharification of steam-pretreated aspen chips. Syrups containing 45 g/L of glucose and 12 g/L of xylose were detoxified through two ion-exchange resins and then fermented with Pichia stipitis and Saccharomyces cerevisiae immobilized in Ca-alginate gel beads. Combinations of different gel fractions in the fermentation volume, amount of yeast cells, and ratios of P. stipitis vs S. cerevisiae within each bead were compared. In the best conditions, by using a total beads volume corresponding to 25% of the working volume, we obtained a yield of 0.39 gethanol/ginitial sugars. This amount of gel entrapped an initial cell concentration of 6×1012cells/L with ratio of S. cerevisiae/P. stipitis of 0.25 g/g. Modified stirredtank reactors were obtained either by adding marbles or by inserting a perforated metal cylinder, which reduced considerably the rupture of beads while visibly improving oxygenation of the medium.  相似文献   

4.
This work is aimed at a selection of yeast strains suitable for simultaneous saccharification and fermentation of waste paper. The waste paper, as a lignocellulosic material, represents an unconventional source for the production of ethanol which is a promising alternative fuel. The yeast strains Saccharomyces cerevisiae and Pichia kudriavzevii produced the highest amounts of ethanol at 30 °C and were also resistant at 40 °C during the first 92 h of fermentation. These two strains were immobilized by entrapment into poly(vinyl alcohol) hydrogel lens-shaped particles LentiKats®. The immobilized S. cerevisiae was a better ethanol producer and retained higher metabolic activity in repeated batch fermentations than P. kudriavzevii. The immobilized S. cerevisiae was also suitable for a long-term storage, with 23% decrease in the ethanol production ability after 1-year storage of yeast cells.  相似文献   

5.
A new lyophilization technique was used for immobilization of Saccharomyces cerevisiae cells in hydroxyethylcellulose (HEC) gels. The suitability of the lyophilized HEC gels to serve as immobilization matrices for the yeast cells was assessed by calculating the immobilization efficiency and the cell retention in three consecutive batches, each in duration of 72 h. Throughout the repeated batch fermentation, the immobilization efficiency was almost constant with an average value of 0.92 (12–216 h). The maximum value of cell retention was 0.24 g immobilized cells/g gel. Both parameters indicated that lyophilized gels are stable and capable of retaining the immobilized yeast cells. Showing the yeast cells propagation within the polymeric matrix, the scanning electron microscope images also confirmed that the lyophilization technique for immobilization of S. cerevisiae cells in the HEC gels was successful. The activity of the immobilized yeast cells was demonstrated by their capacity to convert glucose to ethanol. Ethanol yield of 0.40, 0.43 and 0.30 g ethanol/g glucose corresponding to 79%, 84% and 60% of the theoretical yield was attained in the first, second and third batches, respectively. The cell leakage was less than 10% of the average concentration of the immobilized cells.  相似文献   

6.
7.

Previous shake flask and stirred tank evaluations of temperature tolerant (37–43°C) yeasts in simultaneous saccharification and fermentation (SSF) on Sigmacell-50 cellulose substrates to ethanol have identified several good microorganisms for further SSF studies (27). Of these, the glucose fermenting yeastCandida acidothermophilum, C. brassicae, Saccharomyces cerevisiae, S. uvarum, and a mixed culture of the cellobiose fermenting yeastBrettanomyces clausenii withS. cerevisiae as a control were chosen for shake flask SSF screening experiments with pretreated wheat straw. This study indicates that theSaccharomyces strainscerevisiae anduvarum, give very good performance at high cellulase loadings or when supplemented with Novo-188 β-glucosidase. In fact, with the higher enzyme loadings these yeast will give complete conversion of cellulose to ethanol. Yet at the lower, more economical enzyme loadings, the mixed culture ofBrettanomyces clausenii andS. cerevisiae performs better than any single yeast.

  相似文献   

8.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L−1 of initial sugar concentration was used. Cell yield (Y X/S) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L−1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.  相似文献   

9.
Fermentation properties under the control of multiple genes of industrial Saccharomyces cerevisiae strain are difficult to alter with traditional methods. Here, we describe efficient and reliable genome shuffling to increase ethanol production through the rapid improvement of stress resistance. The strategy is carried out using yeast sexual and asexual reproduction by itself instead of polyethylene glycol-mediated protoplast fusion. After three rounds of genome shuffling, the best performing strain S3-10 was obtained on the special plate containing a high ethanol concentration. It exhibits substantial improvement in multiple stress tolerance to ethanol, glucose, and heat. The cycle of fermentation of S3-10 was not only shortened, but also, ethanol yield was increased by up to 10.96% compared with the control in very-high-gravity (VHG) fermentations. In total, S3-10 possesses optimized fermentation characteristics, which will be propitious to the development of bioethanol fermentation industry.  相似文献   

10.
The effect of salt stress on lipid composition and its relationship with ethanol tolerance inSaccharomyces cerevisiae was studied. Amounts of phospholipids as well as that of sterols decreased, whereas that of protein and glycolipids increased with increasing salt concentration. Relative proportion of amino phospholipids (phosphatidylethanolamine and phosphatidylserine) decreased, whereas that of phosphatidylcholine showed a reverse trend. Cells grown under increasing salt concentration were more resistant to ethanol-induced leakage of UV-absorbing substances, an index of ethanol endurance. Results showed an overlap between osmotolerance and ethanol tolerance in this strain.  相似文献   

11.
Bioethanol was produced using polysaccharide from soybean residue as biomass by separate hydrolysis and fermentation (SHF). This study focused on pretreatment, enzyme saccharification, and fermentation. Pretreatment to obtain monosaccharide was carried out with 20% (w/v) soybean residue slurry and 270 mmol/L H2SO4 at 121 °C for 60 min. More monosaccharide was obtained from enzymatic hydrolysis with a 16 U/mL mixture of commercial enzymes C-Tec 2 and Viscozyme L at 45 °C for 48 h. Ethanol fermentation with 20% (w/v) soybean residue hydrolysate was performed using wild-type and Saccharomyces cerevisiae KCCM 1129 adapted to high concentrations of galactose, using a flask and 5-L fermenter. When the wild type of S. cerevisiae was used, an ethanol production of 20.8 g/L with an ethanol yield of 0.31 g/g consumed glucose was obtained. Ethanol productions of 33.9 and 31.6 g/L with ethanol yield of 0.49 g/g consumed glucose and 0.47 g/g consumed glucose were obtained in a flask and a 5-L fermenter, respectively, using S. cerevisiae adapted to a high concentration of galactose. Therefore, adapted S. cerevisiae to galactose could enhance the overall ethanol fermentation yields compared to the wild-type one.  相似文献   

12.
Salt-tolerant yeast Saccharomyces cerevisiae ARIF KD-003 was applied to highly sensitive and reproducible absorbance-based biochemical oxygen demand (BODAB-ScII) measurement for seawater. In the previous work, we have studied the BODAB-ScI method using normal Baker's yeast S. cerevisiae, and the excellent feature of the Baker's yeast as uniformly sustainable in solution could successfully be utilized. However, the BODAB-ScI responses were disappeared by the existence of chloride ion as well as seawater. In the present method, uniformity in solution was also observed with S. cerevisiae ARIF KD-003, and salt-tolerance of the yeast was observed even in saturate concentration of sodium chloride. Next, characterizations of the influences of pH and incubation temperature were investigated. After optimum conditions were obtained, two calibration curves were made between 0.33 and 22 mg O2 L−1 BOD using standard solution of glucose glutamic acid (GGA) or mixture of GGA and artificial seawater. Then, excellent reproducibility as the averages of relative standard deviation (R.S.D.av) in two calibration curves (nine points each) was successfully obtained at 1.10% at pure water or 1.03% at artificial seawater standard, respectively. In addition, the 3σ lower detection limit was calculated to be 0.07 mg O2 L−1 BOD, and 0.11 mg O2 L−1 BOD was experimentally detected by increase of the sample volume at 1.5-folds. The storage stability of the S. cerevisiae ARIF KD-003 was obtained at least 4 weeks.  相似文献   

13.
d-Xylose is a major constituent of hemicellulose, which makes up 20–30% of renewable biomass in nature.d-Xylose can be fermented by most yeasts, includingSaccharomyces cerevisiae, by a two-stage process. In this process, xylose is first converted to xylulose in vitro by the enzyme xylose (glucose) isomerase, and the latter sugar is then fermented by yeast to ethanol. With the availability of an inexpensive source of xylose isomerase produced by recombinantE. coli, this process of fermenting xylose to ethanol can become quite effective. In this paper, we report that yeast xylose and xylulose fermentation can be further improved by cloning and overexpression of the xylulokinase gene. For instance, the level of xylulokinase activity in S.cerevisiae can be increased 230fold by cloning its xylulokinase gene on a high copy-number plasmid, coupled with fusion of the gene with an effective promoter. The resulting genetically-engineered yeasts can ferment xylose and xylulose more than twice as fast as the parent yeast.  相似文献   

14.
Different soluble NAD+-dependent alcohol dehydrogenase (ADH) isozymes were detected in cell-free homogenates from aerobically grown mycelia of YR-1 strain of Mucor circinelloides isolated from petroleumcontaminated soil samples. Depending on the carbon source present in the growth media, multiple NAD+-dependent ADHs were detected when hexadecane or decane was used as the sole carbon source in the culture media. ADH activities from aerobically or anaerobically grown mycelium or yeast cells, respectively, were detected when growth medium with glucose added was the sole carbon source; the enzyme activity exhibited optimum pH for the oxidation of different alcohols (methanol, ethanol, and hexadecanol) similar to that of the corresponding aldehyde (≈7.0). Zymogram analysis conducted with partially purified fractions of extracts from aerobic mycelium or anaerobic yeast cells of the YR-1 strain grown in glucose as the sole carbon source indicated the presence of a single NAD+-dependent ADH enzyme in each case, and the activity level was higher in the yeast cells. ADH enzyme from mycelium grown in different carbon sources showed high activity using ethanol as substrate, although higher activity was displayed when the cells were grown in hexadecane as the sole carbon source. Zymogram analysis with these extracts showed that this particular strain of M. circinelloides has four different isozymes with ADH activity and, interestingly, one of them, ADH4, was identified also as phenanthrene-diol-dehydrogenase, an enzyme that possibly participates in the aromatic hydrocarbon biodegradation pathway.  相似文献   

15.
The quantitative composition of glycolipids from leaves of Eminium Lehmanii (Araceae) was established. It was shown that the predominant glycolipids were monogalactosyldiglycerides and digalactosyldiglycerides. The fatty-acid compositions of six glycolipids, of which digalactosyldiglycerides and sterylglycoside esters contained greater than 70% linoleic acid, were determined by GC. The main carbohydrate component of the leaf glycolipids was galactose. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 409–410, September–October, 2005.  相似文献   

16.
17.
This work represents a continuation of our investigation into environmental conditions that promote lactic acid synthesis by Zymomonas mobilis. The characteristic near theoretical yield of ethanol from glucose by Z. mobilis can be compromised by the synthesis of d- and l-lactic acid. The production of lactic acid is exacerbated by the following conditions: pH 6.0, yeast extract, and reduced growth rate. At a specific growth rate of 0.048/h, the average yield of dl-lactate from glucose in a yeast extract-based medium at pH 6.0 was 0.15 g/g. This represents a reduction in ethanol yield of about 10% relative to the yield at a growth rate of 0.15/h. Very little lactic acid was produced at pH 5.0 or using a defined salts medium (without yeast extract) Under permissive and comparable culture conditions, a tetracycline-resistant, d-ldh negative mutant produced about 50% less lactic acid than its parent strain Zm ATCC 39676. d-lactic acid was detected in the cell-free spent fermentation medium of the mutant, but this could be owing to the presence of a racemase enzyme. Under the steady-state growth conditions provided by the chemostat, the specific rate of glucose consumption was altered at a constant growth rate of 0.075/h. Shifting from glucose-limited to nitrogen-limited growth, or increasing the temperature, caused an increase in the specific rate of glucose catabolism. There was good correlation between an increase in glycolytic flux and a decrease in lactic acid yield from glucose. This study points to a mechanistic link between the glycolytic flux and the control of end-product glucose metabolism. Implications of reduced glycolytic flux in pentose-fermenting recombinant Z. mobilis strains, relative to increased byproduct synthesis, is discussed.  相似文献   

18.
The use of stalks instead of tubers as a source of carbohydrates for ethanol production has been investigated. The inulin present in the stalks of Jerusalem artichoke was extracted with water and the effect of solid-liquid ratio, temperature, and acid addition was studied and optimized in order to attain a high-fructose fermentable extract. The maximum extraction efficiency (corresponding to 35 g/L) of soluble sugars was obtained at 1/6 solidliquid ratio. Fermentations of hydrolyzed extracts by baker's yeast and direct fermentation by an inulinease activity yeast were also performed and the potential to use this feedstock for bioethanol production assessed. The results show that the carbohydrates derived from Jerusalem artichoke stalks can be converted efficiently to ethanol by acidic hydrolysis followed by fermentation with Saccharomyces cerevisiae or by direct fermentation of inulin using Kluyveromyces marxianus strains. In this last case about 30 h to complete fermentation was required in comparison with 8–9 h obtained in experiments with S. cerevisiae growth on acid extracted juices.  相似文献   

19.
Growth of yeast cells (Saccharomyces cerevisiae) at the expense of glucose or ethanol in batch and chemostat cultures was studied by flow-microcalorimetry. With glucose media and with batch cultures on ethanol the energy balances were completely established, whereas as with chemostat cultures on ethanol a lack of about 25% of the energy-input occured which was not converted into biomass or dissipated as heat.  相似文献   

20.
Furfural and hydroxymethylfurfural (HMF) are representative inhibitors among many inhibitive compounds derived from biomass degradation and saccharification for bioethanol fermentation. Most yeasts, including industrial strains, are susceptible to these inhibitory compounds, especially when multiple inhibitors are present. Additional detoxification steps add cost and complexity to the process and generate additional waste products. To promote efficient bioethanol production, we studied the mechanisms of stress tolerance, particularly to fermentation inhibitors such as furfural and HMF. We recently reported a metabolite of 2,5-bis-hydroxymethylfuran as a conversion product of HMF and characterized a dose-dependent response of ethanologenic yeasts to inhibitors. In this study, we present newly adapted strains that demonstrated higher levels of tolerance to furfural and HMF. Saccharomyces cerevisiae 307-12H60 and 307-12H120 and Pichia stipitis 307 10H60 showed enhanced biotransformation ability to reduce HMF to 2,5-bis-hydroxymethylfuran at 30 and 60 mM, and S. cerevisiae 307-12-F40 converted furfural into furfuryl alcohol at significantly higher rates compared to the parental strains. Strains of S. cerevisiae converted 100% of HMF at 60 mM and S. cerevisiae 307-12-F40 converted 100% of furfural into furfuryl alcohol at 30 mM. The results of this study suggest a possible in situ detoxification of the inhibitors by using more inhibitor-tolerant yeast strains for bioethanol fermentation. The development of such tolerant strains provided a basis and useful materials for further studies on the mechanisms of stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号