首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confocal Raman microspectrometry has been applied successfully as an in situ probe of the transport of guest molecules through the one-dimensional channel system in a crystalline inclusion compound, yielding insights into the spatial distribution of guest molecules and, in particular, the variation in the spatial distribution of the guest molecules as a function of time during the transport process.  相似文献   

2.
A competitive photoresponsive supramolecular system is formed in a dilute aqueous solution of three components: vesicles of amphiphilic α-cyclodextrin host 1a, divalent p-methylphenyl guest 2 or divalent p-methylbenzamide guest 3, and photoresponsive azobenzene monovalent guest 5. Guests 2 and 3 form weak inclusion complexes with 1a (K(a)≈10(2) M(-1)), whereas azobenzene guest 5 forms a strong inclusion complex (K(a)≈10(4) M(-1)), provided it is in the trans state. The aggregation and adhesion of vesicles of host 1a is mediated by guest 2 (or 3) due to the formation of multiple intervesicular noncovalent links, as confirmed by using isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). The addition of excess monovalent guest trans-5 to vesicles of 1a aggregated by divalent guest 2 (or 3) causes the dispersion of vesicles of 1a because trans-5 displaces 2 (as well as 3) from the vesicle surface. Upon UV irradiation of a dilute ternary mixture of vesicles of 1a, guest 2 (or 3), and competitor trans-5, compound trans-5 isomerizes to cis-5, and renewed aggregation of vesicles of 1a by guest 2 (or 3) occurs because 2 (as well as 3) displaces cis-5 from the vesicle surface. Subsequent visible irradiation causes the redispersion of vesicles of 1a because cis-5 reisomerizes into trans-5, which again displaces guest 2 (or 3) from the vesicle surface. In this way, the competitive photoresponsive aggregation and dispersion of vesicles can be repeated for several cycles.  相似文献   

3.
A macrocycle composed of six cavitands was assembled into a tris-capsule and a tris-carceplex, each of which encapsulates three guest molecules.  相似文献   

4.
Thermoresponsive synergistic hydrogen bonding (H‐bonding) switched by several guest units in a water‐soluble polymer is reported. Adjusting the distribution of guest units can effectively change the synergistic H‐bonding inside polymer chains, thus widely switch the preorganization and thermoresponsive behavior of a water‐soluble polymer. The synergistic H‐bonding is also evidenced by converting less polar aldehyde groups into water‐soluble oxime groups, which bring about the lowering‐down of cloud point and an amplified hysteresis effect. This is a general approach toward the wide tunability of thermosensitivity of a water‐soluble polymer simply by adjusting the distribution of several guest H‐bonding units.  相似文献   

5.
The inclusion behavior of gaseous guest molecules in a solid apohost, an orthogonal anthracene-bis(resorcinol)tetraol (1), was investigated with a quartz-crystal microbalance (QCM). Compound 1 forms crystals composed of molecular sheets bound together by an extensive hydrogen-bonded network. An apohost of 1 was cast onto a QCM and the binding of gaseous guest molecules was followed as a function of time by observing the decrease in the oscillation frequency, which is directly related to the increase in mass. Ethyl acetate and methyl ethyl ketone were significantly included into the apohost, whereas benzene and cyclohexane were simply adsorbed onto the surface of the solid; all these guests have similar vapor pressures at 25 degrees C. On the other hand, a host analogue 2, a tetramethoxy derivative of 1, barely included these guest molecules. The inclusion amount and the rate of inclusion of ethyl acetate or methyl ethyl ketone showed a drastic increase above a threshold concentration of guests in the gas phase. Thus, the structure of the apohost changed cooperatively in order to bind guest molecules above the threshold guest concentration. This cooperativity of the binding behavior was kinetically analyzed.  相似文献   

6.
The host–guest complexation between a novel guest namely; 2-(4-pyridinylbenzothiazolyl) ethane, PBE and β-cyclodextrin was studied using steady-state absorption and emission techniques. The fluorescence maximum is strongly blue-shifted with a great enhancement in the fluorescence intensity upon addition of β-CD, confirming the formation of inclusion complexes. The solid inclusion complex between PBE and β-CD has been prepared, characterised using FT-IR, X-ray diffraction and scanning electron microscope techniques. PBE is encapsulated with β-CD nanocavity and 1:1 PBE–β-CD host–guest interaction is identified. This is confirmed using semi-empirical quantum chemical calculations. PBE guest entered into the less polar cavity through the benzothiazole moiety. The negative values of enthalpy and free energy changes suggest that the encapsulation process is thermodynamically favourable. Additionally, the fluorescence is more sensitive to the micellar medium, whether it was cationic, anionic or neutral as well as metal ions like, Li+, Cu2+ and Fe3+. Finally, the antimicrobial activities of PBE guest and its inclusion complex with β-CD host are studied.  相似文献   

7.
A new class of polymeric thermometers with a memory function is reported that is based on the supramolecular host–guest interactions of poly(N‐isopropylacrylamide) (PNIPAM) with side‐chain naphthalene guest moieties and the tetracationic macrocycle cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the host. This supramolecular thermometer exhibits a memory function for the thermal history of the solution, which arises from the large hysteresis of the thermoresponsive LCST phase transition (LCST=lower critical solution temperature). This hysteresis is based on the formation of a metastable soluble state that consists of the PNIPAM–CBPQT4+ host–guest complex. When heated above the transition temperature, the polymer collapses, and the host–guest interactions are disrupted, making the polymer more hydrophobic and less soluble in water. Aside from providing fundamental insights into the kinetic control of supramolecular assemblies, the developed thermometer with a memory function might find use in applications spanning the physical and biological sciences.  相似文献   

8.
Confocal Raman microspectrometry has been used as an in situ probe of the transport of guest molecules along the one-dimensional tunnels in a crystalline urea inclusion compound, under conditions of guest exchange in which "new" guest molecules (pentadecane) are introduced at one end of the tunnel and displace the "original" guest molecules (1,8-dibromooctane). The Raman spectra, recorded as a function of position along the tunnel direction and as a function of time, have been used to establish details of the kinetics of the guest transport process. In particular, the transport of the new pentadecane guest molecules along the tunnel is found to exhibit a linear dependence on time, with the rate of the process in the region of 70-100 nm s-1. Mechanistic aspects relating to the guest transport process are discussed.  相似文献   

9.
A novel cyclodextrin (CD) dimer linked with a bis(picolinyl)cystine (Cys) moiety was prepared by the coupling of Boc-protected Cys with amino-modified CDs, followed by deprotection of the Boc groups and bispicolinylation. The dimer showed less affinity to an organic guest molecule compared to that of a native CD monomer. It was attributed to an intramolecular inclusion of the pyridine moiety into CD cavity. The dimer caused significant increase of its organic guest affinity by an addition of a copper ion. The included pyridine group may come out of a CD cavity to bind the copper ion and the two CDs included cooperatively and intermolecularly a guest molecule with high affinity.  相似文献   

10.
Confocal Raman microspectrometry has been applied as an in situ probe of the transport of guest molecules along the one-dimensional tunnels in a crystalline urea inclusion compound, under conditions of guest exchange in which "new" guest molecules (pentadecane) are introduced at one end of the tunnel and displace the "original" guest molecules (1,8-dibromooctane). The Raman spectra, recorded as a function of position along the tunnel direction and as a function of time, demonstrate that the transport process is associated with a significant change in the conformational properties of the original (1,8-dibromooctane) guest molecules. In particular, in the boundary region between the original and new guest molecules, there is a substantial increase in the proportion of 1,8-dibromooctane guest molecules that have the gauche end-group conformation. The wider implications of this observation are discussed in relation to fundamental aspects of the molecular transport process in this material.  相似文献   

11.
Encapsulating a single G-quadruplex aptamer in a protein nanocavity   总被引:1,自引:0,他引:1  
The alpha-hemolysin (alphaHL) protein pore has many applications in biotechnology. This article describes a single-molecule manipulation system that utilizes the nanocavity enclosed by this pore to noncovalently encapsulate a guest molecule. The guest is the thrombin-binding aptamer (TBA) that folds into the G-quadruplex in the presence of cations. Trapping the G-quadruplex in the nanocavity resulted in characteristic changes to the pore conductance that revealed important molecular processes, including spontaneous unfolding of the quartet structure and translocation of unfolded DNA in the pore. Through detection with Tag-TBA, we localized the G-quadruplex near the entry of the beta-barrel inside the nanocavity, where the molecule vibrates and rotates to different orientations. This guest-nanocavity supramolecular system has potential for helping to understand single-molecule folding and unfolding kinetics.  相似文献   

12.
A new approach based on a conjugated polymer/block copolymer guest/host system for the generation of polarized photoluminescence is reported. Synthetic modification of a poly(p-phenylene-ethynylene) (PPE) conjugated polymer is used for domain-specific incorporation into a cylindrical morphology block copolymer host matrix. Subsequent ordering of the host nanostructure via roll cast processing templates uniaxial alignment of the guest PPE. The ordered films are optically anisotropic displaying both polarized absorption with a dichroic ratio of 3.0 at 440 nm and polarized emission with a polarization ratio of 7.3 at 472 nm.  相似文献   

13.
In a tight host–guest complex assembled solely by nondirectional van der Waals forces, unique motions of the guest, such as solid‐state inertial rotations, emerge. The regulation of dynamic motions is an important element to be explored for novel functions of such complexes, which may be seemingly difficult to achieve because of the nondirectionality of the assembling forces. A regulated, single‐axis rotation was made possible by choosing an appropriate shape of the guest in the tubular host. Specifically, an ellipsoidal guest was made to stand along a cylinder axis of the host, which consequently resulted in single‐axis rotations of the guest in the solid. The rotational frequency was considerably high for solid‐state rotations but was suppressed to 10 GHz, which was 1/20 of the isotropic rotation of a spherical guest. In‐depth kinetic analyses quantitatively revealed that the entropy cost was a determining factor that regulated the dynamics.  相似文献   

14.
The cellular permeability of compounds can be enhanced in the presence of a host-[2]rotaxane (HR). The effective concentration of an HR is limited by the stoichiometry of the complex formation of the HR and the delivered compound. We speculate that a complex forms between the HR and a guest during membrane passage. To further explore the relationship between guest binding and guest delivery and to obtain more efficient delivery devices, we present, in this report, the first example of a cyclophane-[3]rotaxane (Cy3R), which has two wheels and a cyclophane as a blocking group. The properties of Cy3R were compared to a new cyclophane-[2]rotaxane (Cy2R) that has the same cyclophane pocket as Cy3R but only a single wheel. The second wheel of Cy3R can form additional noncovalent bonds, e.g., salt bridges, cation-pi interactions or aromatic-aromatic interactions, with appropriately functionalized guests. We show by flow cytometric analysis that Cy3R transfers Fl-AVWAL (76%) and to a lesser degree Fl-QEAVD (26%) into live cells. The level of Fl-peptide within a cell is concentration dependent and largely temperature and ATP independent, suggesting that a Cy3R.Fl-peptide complex passes through the cellular membrane without requiring active cell-mediated processes. Cy2R, on the other hand, forms weaker complexes and requires a higher concentration to transfer materials into cells. These results demonstrate that the addition of a second wheel on a rotaxane can improve guest binding in various solvents and hence delivery through cellular membranes.  相似文献   

15.
The ability to pack guest molecules into charged dendronized polymers (denpols) and the possibility to release these guest molecules from subsequently densely aggregated denpols in a load–collapse–release cascade is described. Charged denpols, which constitute molecular objects with a persistent, well‐defined envelope and interior, are capable of incorporating large amounts of amphiphilic guest molecules. Simultaneously, multivalent ions can coordinate to the surfaces of charged denpols, leading to counterion‐induced aggregation of the already guest‐loaded host structures. Thus, although the local guest concentration in denpol‐based molecular transport might already be initially high due to the dense guest packing inside the dendritic denpol scaffolding, the “local” guest concentration can nonetheless be further increased by packing (through aggregation) of the host–guest complexes themselves. Subsequent release of guest compounds from densely aggregated dendronized polymers is then possible (e.g., through increasing the solution concentration of imidazolium‐based ions). Augmented with this release possibility, the concept of twofold packing of guests, firstly through hosting itself and secondly through aggregation of the hosts, gives rise to a load–collapse–release cascade that strikingly displays the high potential of dendronized macromolecules for future molecular transport applications.  相似文献   

16.
The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs.  相似文献   

17.
The supramolecular host assembly [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) encapsulates cationic guest molecules within its hydrophobic cavity and catalyzes a variety of chemical transformations within its confined interior space. Despite the well-defined structure, the host ligand framework and interior cavity are very flexible and 1 can accommodate a wide range of guest shapes and sizes. These observations raise questions about the steric effects of confinement within 1 and how encapsulation fundamentally changes the motions of guest molecules. Here we examine the motional dynamics (guest bond rotation and tumbling) of encapsulated guest molecules to probe the steric consequences of encapsulation within host 1. Encapsulation is found to increase the Ph-CH(2) bond rotational barrier for ortho-substituted benzyl phosphonium guest molecules by 3 to 6 kcal/mol, and the barrier is found to depend on both guest size and shape. The tumbling dynamics of guests encapsulated in 1 were also investigated, and here it was found that longer, more prolate-shaped guest molecules tumble more slowly in the host cavity than larger but more spherical guest molecules. The prolate guests reduce the host symmetry from T to C(1) in solution at low temperatures, and the distortion of the host framework that is in part responsible for this symmetry reduction is observed directly in the solid state. Analysis of guest motional dynamics is a powerful method for interrogating host structure and fundamental host-guest interactions.  相似文献   

18.
A proof‐of‐concept related to the redox‐control of the binding/releasing process in a host–guest system is achieved by designing a neutral and robust Pt‐based redox‐active metallacage involving two extended‐tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host–guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host–guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data (1H NMR spectroscopy, ESI‐FTICR, and spectroelectrochemistry) as well as by in‐depth theoretical calculations performed at the density functional theory (DFT) level.  相似文献   

19.
The rotational mobility of organic guest molecules when included within a confined capsule is restricted and this feature could be translated into product selectivity as established with the photochemical behavior of cyclohexyl phenyl ketones.  相似文献   

20.
The thermodynamic stability of a clathrate hydrate encaging non-spherical molecules has been investigated by examining the free energy of cage occupancy. In the present study, a generalized van der Waals and Platteeuw theory is extended to treat the rotational motion of guest molecules in clathrate hydrate cages. The vibrational free energy of both guest and host molecules is divided into harmonic and anharmonic contributions. The anharmonic free energy associated with the non-spherical nature of the guest molecules is evaluated as a perturbation from the spherical guest. Predicted thermodynamic properties are compared with measured values. It is shown that this anharmonic contribution is important in the free energy of the hindered rotation of the guests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号