首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The title compound 3 has been synthesized from 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride (1) via compound 2. Azide reduction of 3 is accompanied by ON-acetyl migration to afford N-acetyl-N-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-β-D-arabino-hexopyranosyl) amine (4), also characterized as its Z and E peracetates. On the basis of IR, 1H NMR and X-ray structural data from compound 4, its β-NHAc configuration, (Z) 2-hydroxyimino, and °S2 conformation, were established.  相似文献   

2.
ABSTRACT

The syntheses of α-D-GlcpNAc-(1→4)-β-D-Galp-(1→4)-β-D-GlcNAc-(1→O)-(CH2)15CH3 (1) and fragments thereof, corresponding to structures found in human ovarian cyst fluid, are described. Silver triflate promoted coupling of 3,4,6-tri-O-acetyl-2-azido-2-deoxy-β-D-glucopyranosyl bromide (12) and galactose acceptor (11) gave a disaccharide donor (13), which was readily transformed into the corresponding bromo-derivative 18. For the synthesis of disaccharide β-D-Galp-(1→4)-D-GlcNAc, several differently protected glucosamine acceptors were prepared. It was found that cetyl alcohol needed to be introduced after the formation of the β-galactoside bond. Glycosylation of pent-4-enyl 3,6-di-O-benzyl-2-deoxy-2-tetrachlorophthalimido-β-D-glucopyranoside (30) with (3,4,6-tri-O-acetyl-2-azido-2-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-α-D-galactopyranosyl bromide (18) by use of silver triflate as promoter gave the desired trisaccharide 31. Finally 31 was transformed via coupling to the long alkyl chain aglycon and deprotection into the title compound 1.  相似文献   

3.
Abstract

Stereoselective α-D-galactosylation at the position 3 of 4,6-O-substituted derivatives of methyl 2-acetamido-2-deoxy-α-D-glucopyranoside is described. Glycosyl chlorides derived from 3,4,6-tri-O-acetyl-2-O-benzyl- and 2-O-(4-methoxybenzyl)-D-galactopyranose have been used as glycosyl donors. Methyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-(3,4,6-tri-O-acetyl-α-D-galactopyranosyl)-α-D-glucopyranoside (27) and methyl 2-acetamido-4,6-di-O-benzyl-2-deoxy-3-O-(3,4,6-tri-O-acetyl-α-D-galactopyranosyl)-α-D-glucopyranoside (31) have been prepared.  相似文献   

4.
ABSTRACT

The stepwise synthesis of methyl α-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (EBC-OMe, 1), methyl α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (A(E)BC-OMe, 2), and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranoside (DA(E)BC-OMe, 3) is described. Compounds 1, 2 and 3 constitute the methyl glycosides of fragments of the O-specific polysaccharide of Shigella flexneri serotype 5a. Methyl 2,4-di-O-benzoyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzoyl-α-L-rhamnopyranoside was an appropriate BC precursor for the synthesis of 1. For the synthesis of the branched targets 2 and 3, a benzyl group was best suited at position 2 of rhamnose C. Thus, methyl 4-O-benzyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside was the key intermediate to the BC portion. In all cases, 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride was a convenient E precursor, when used in combination with titanium tetrafluoride. All along, attention was paid to steric hindrance as a factor of major impact on the condensation steps outcome. Therefore, based on previous experience, 2-O-acetyl-3,4-di-O-allyl-α-L-rhamnopyranosyl trichloroacetimidate and 3,4,6-tri-O-acetyl-2-deoxy-2-trichloroacetamido-α-D-glucopyranosyl trichloroacetimidate were used as donors. Both suited all requirements when used as key precursors for residues A and D in the synthesis of 3, respectively.  相似文献   

5.
Phosphorylation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucose at the anomeric hydroxy group gave previously unknown triethylammonium 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-D-glucopyranosyl phosphonate, and successive treatment of the latter with decan-1-ol and aqueous iodine afforded triethylammonium 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl phosphate.  相似文献   

6.
Abstract

The synthesis is reported of 3-aminopropyl 3-O-[4-O(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-α-L-rhamnopyranoside (34), 3-aminopropyl 2-acetamido-3-O-[4-0-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-2-deoxy-β-D-galactopyranoside (37), 3-aminopropyl 3-O-[4-O-(β-L-rhamnopyranosyl)-α-D-glucopyranosyl]-α-D-galactofuranoside (41), and 3-aminopropyl 4-O-[4-O-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranoside (45). These are spacer-containing fragments of the capsular polysaccharides of Streptococcus pneumoniae type 2, 7F, 22F, and 23F, respectively, which are constituents of Pneumovax© 23. 2,3,4-Tri-O-benzyl-α-L-rhamnopyranosyl bromide was coupled to l,6-anhydro-2,3-di-(O-benzyl-β-D-glucopyranose (3). Opening of the anhydro ring, removal of AcO-1, and imidation of l,6-anhydro-2,3-di- O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-L-rhamnopyranosyl)-β-D-glucopyranose (4β) afforded 6-O-acetyl-2,3-di-O-ben-zyl-4-O-(2,3,4-tri- O-benzyl-β-L-rhamnopyranosyl)-αβ-D-glucopyranosyl trichloroacet-imidate (7αβ). Condensation of 7αβ with 3-N-benzyloxycarbonylaminopropyl 2-O-ben-zyl-5,6-O-isopropylidene-α-D-galactofuranoside (26), followed by deprotection gave 41 Opening of the anhydro ring of 4 p followed by debenzylation, acerylauon, removal of AcO-1, and imidation yielded 2,3,6-tri-(9-aceryl-4-O-(2,3,4-tri-0-acetyl-P-L-rharnnopyran-.-osyl)-α-D-glucopyranosyl trichloroacetimidate (11). Condensation of 11 with 3-N-bcn-zyloxycarbonylaminopropyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (18), with 3-N-bcn-zyloxycarbonylaminopropyl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyran-oside (21), or with 3-N -benzyloxycarbonylaminopropyl 2-O-acetyl-3-O-allyl-6-O-benzyl-β-D-galactopyranoside (31), followed by deprotection afforded 34, 37, and 45, respectively.  相似文献   

7.
ABSTRACT

Synthesis of three tetrasaccharides, namely, 0-α-L-fucopyranosyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-β-D-glucopyranose (7), 0-α-L-fucopyranosyl-(1→4)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (9), and 0-α-L-fucopyransoyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyransoyl)-(1→6)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (15) has been described. Their structures have been established by 13C NMR spectroscopy.  相似文献   

8.
New oxamides, derivatives of D-glucosamine and aliphatic or aromatic amines were prepared by acylation of methyl 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-α- or -β-D-glucopyranoside (1c or 1d) with oxalyl chloride, followed by reaction with amine. The reaction was assumed to proceed by the intermediate of N-carbomethoxy N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α or β-D-glucopyranosid-2-yl) oxamic acid chloride which reacted with amines, and afforded N-acetyl, N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α- or -β-D-glucopyranosid-2-yl), N′-alkyl or aryloxamide (5–7), and N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α- or -β-D-glucopyranosid-2-yl), N′-alkyl or aryloxamide (8–13).  相似文献   

9.
Abstract

The reaction of phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthaIimido-l-thio-β-D-glucopyranoside with methyl 3,4,6-tri-O-benzyl-α-D-mannopyranoside catalysed by iodonium ion (TfOH-NIS) followed by deacylation-acetylarion afforded disaccharide 11. which was readily converted (in four steps) to bromide 12. A similar glycosylarion with phenyl 2,3,4,6-tetra-O-acetyl-l-thio-D-glucopyranoside of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside 16 followed by O-deacetylation of the resulting intermediate gave disaccharide 18. The 4,6-O-benzylidene derivative of 18 was acetylated then deacetaled to give diol 21. This diol acceptor was condensed with bromide 12 (promoted by mercuric cyanide) to give the partially protected tetrasaccharide derivative 22 which was O-deacetylated and then subjected to catalytic hydrogenation to furnish the title tetrasaccharide 6. The structure assigned to 6 was supported by 1H and 13C NMR spectral data and FAB mass spectroscopy.  相似文献   

10.
ABSTRACT

The four derivatives of β-maltosyl-(1→4)-trehalose have been synthesized, which are monodeoxygenated at the site of one of the primary hydroxyl groups. The tetrasaccharides were constructed in [2+2] block syntheses. Thus, 6′″-deoxy-β-maltosyl-(1→4)-trehalose was prepared by selective iodination of allyl 2,3,6,2′,3′-penta-O-acetyl-β-maltoside (3) followed by catalytic hydrogenolysis and coupling with 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (9), and 6″-deoxy-β-maltosyl-(1→4)-trehalose by selective iodination of allyl 4′,6′-O-isopropylidene-β-maltoside (14), coupling with 9, and one-step hydrogenolysis at the tetrasaccharide level. For the synthesis of 6′-deoxy-β-maltosyl-(1→4)-trehalose, the diol 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′-di-O-benzyl-α-D-glucopyranoside (22) was selectively iodinated and glycosylated with acetobromomaltose followed by catalytic hydrogenolysis. The 6-deoxy-β-maltosyl-(1→4)-trehalose was obtained upon selective iodination of a tetrasaccharide diol.  相似文献   

11.
Abstract

Sequential tritylation, benzoylation and detritylation of D-glucose, followed by resolution of the crude product by chromatograpEy gave crystalline 1,2,3,4-tetra-O-benzoyl-α- (1) and β-D-glucopyranose (2). Compound 1, 2, and the corresponding methyl α-glycoside 5 were treated with dimethylaminosulfur trifluoride (methyl DAST) to give, respectively, the 6-deoxy-6-fluoro derivatives 3, 4, and 6. Crystalline 2,3,4-tri-O-benzoyl-6-deoxy-6-fluoro-α-D-glucopyranosyl chloride (10) could be obtained from either 3, 4, or 5 by reaction with dichloromethyl methyl ether in the presence of anhydrous zinc chloride. Silver trifluoromethanesulfonate-promoted reaction of 10 with methyl 2-O-(9) and 3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (8) gave the corresponding, (β-linked disaccharidës in high yield. Subsequent deprotection afforded the 6′-deoxy-6′-fluoro derivatives of methyl α-sophoroside (13) and methyl 6′ -deoxy-o′-fluoro-α-laminaribioside (16). Condensation of 8 and 9 with 6-O-acetyl-2,3,4-tri-O-benzyl-α-D-glucopyranosyl chloride in the presence of silver perchlorate was highly stereoselective and produced the α-linked disaccharidës 17 and 21, respectively, in excellent yield. Deacetylation of 17 and 21, followed by fluorination of the resulting alcohols 18 and 22 with methyl DAST and subsequent hydrogenolysis, gave 6′-deoxy-6′-fluoro derivatives of methyl α-kojibioside and methyl α-nigeroside 20 and 24, respectively.  相似文献   

12.
Conclusions The methyl ester of O-[2-acetamido-3,4,6-tri-O-acetyl-2-deoxy--D-glucopyranosyl]-N-carbobenzoxy-L-serine and n-nonyl 2-acetamido-4-O- (2-acetamido-2-deoxy--D-glucopyranosyl)-2-deoxy-jS-D-glucopyranoside have been synthesized by the oxazoline method.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, p. 2622, November, 1969.  相似文献   

13.
Abstract

The transmannosylation activity of β-mannosidase from snail and β-galactosidase from Aspergillus oryzae was used for the synthesis of methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 1-hexyl, cyclohexyl, and 1-octyl β-D-mannopyranosides (3a-i), respectively. The regioisomeric specificities and wide substrate acceptance of this galactosidase are demonstrated. Thus, 4-nitrophenyl 4-O-(α-D-glucopyranosyl)-β-D-glucopyranoside (6), 4-nitrophenyl 2-O-(β-D-glucopyranosyl)-β-D-glucopyranoside (7), 4-nitrophenyl 2-deoxy-2N-acetyl-6-O-(2-deoxy-2-N-acetyl-β-D-glucopyranosyl)-β-D-glucopyranoside(8),4-nitropheny 13-O-(β-D-mannopyranosyl)-α-D-mannopyranoside (9), and 4-nitrophenyl 4-O-(β-D-mannopyranosyl)-β-D-mannopyranoside (10) were prepared by chemoenzymatic self-transfer reaction.  相似文献   

14.
ABSTRACT

Stereocontrolled, stepwise synthesis of methyl α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside (A(E)B, 1) and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside (DA(E)B, 2) is described; these constitute the methyl glycosides of fragments of the O-specific polysaccharide of Shigella flexneri serotype 5a. Two routes to trisaccharide 1 were considered. Route 1 involved the coupling of a precursor to residue A and a disaccharide EB, whereas route 2 was based on the condensation of a precursor to residue E and a disaccharide AB. Rather surprisingly, the latter afforded the β-anomer of 1, namely methyl α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside as the major product. Route 1 was preferred. Overall, several observations made during this study suggested that, for the construction of higher fragments, a suitable precursor to rhamnose A would require protecting groups of low bulkiness at position 3 and 4. Therefore, the 2-O-acetyl-3,4-di-O-allyl-α-L-rhamnopyranosyl trichloroacetimidate (35) was the precursor of choice to residue A in the synthesis of the tetrasaccharide 2. The condensation product of 35 and methyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-4-O-benzyl-α-L-rhamnopyranoside was selectively deacylated and condensed to 2-trichloroacetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl trichloroacetimidate to afford the corresponding fully protected tetrasaccharide 45. Controlled stepwise deprotection of the latter proceeded smoothly to afford the target 2. It should be emphasised that the preparation of 45 was not straightforward, several donors and coupling conditions that were tested resulted only in the complete recovery of the acceptor. Distortion of several signals in the 13C NMR spectra of the fully or partially protected tetrasaccharide intermediates suggested that steric hindrance, added to the known low reactivity of HO-2 of rhamnosyl acceptors, probably played a major role in the outcome of the glycosidation attempts.  相似文献   

15.
ABSTRACT

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at positions 4 or 4′″ have been synthesized in [2+2] block syntheses. After the preparation of precursors with only one free hydroxyl group the deoxy function was introduced by a Barton-McCombie reaction. Thus, glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (4) with octa-O-acetyl-β-maltose (3) gave tetrasaccharide 5 with only one free hydroxyl group at the 4-position. The 4′-position of an allyl maltoside was available selectively after removal of a 4′,6′-cyclic acetal and selective benzoylation of the 6′-position. Reduction of this derivative 11 afforded allyl O-(2,3-di-O-acetyl-6-O-benzoyl-4-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (14), which was deallylated, activated as an trichloroacetimidate, and coupled to 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (20). Several compounds were fully characterized by 1H NMR spectroscopy. Deprotection furnished the monodeoxygenated tetrasaccharides 9 and 23.  相似文献   

16.
Abstract

DAST-assisted rearrangement of 3-O-allyl-4-O-benzyl-α-l-rhamnopyranosyl azide followed by treatment of the generated fluorides with ethanethiol and BF3·OEt2 gave glycosyl donor ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside. Stereoselective glycosylation of methyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside with ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside, under the agency of NIS/TfOH afforded methyl 3-O-(3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzyli-dene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Removal of the allyl function of the latter dimer, followed by condensation with properly protected 2-azido-2-deoxy-glucosyl donors, in the presence of suitable promoters, yielded selectively methyl 3-O-(3-O-[6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranosyl]-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Deacetylation and subsequent glycosylation of the free HO-6 with phenyl 2,3,4,6-tetra-O-benzoyl-1-seleno-β-D-glucopyranoside in the presence of NIS/TfOH furnished a fully protected tetrasaccharide. Deprotection then gave methyl 3-O-(3-O-[6-O-{β-D-glucopyranosyl}-2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-acetamido-2,6-dideoxy-α-L-glucopyranosyl)-2-acetamido-2-deoxy-β-D-glucopyranoside.  相似文献   

17.
ABSTRACT

A systematic study is presented for the most common methods used for the preparation of the disaccharide benzyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (9) from “standard 2-amino-2-deoxyglucopyranosyl donors” 1-6 and benzyl 3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (7) as an acceptor. It was found that the highest yield was obtained when the trichloroacetimidate derivative 1 was coupled to the 4 position of acceptor 7. In an analogous manner, the disaccharides allyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6,-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (10), benzyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-galactopyranoside (12), and allyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'3)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (14) were prepared.  相似文献   

18.
The trisaccharide derivative methyl 2-O-[4,6-di-O-acetyl-3-O-(2,3,4,6-tetra-O-benzyl-α-D-gal-actopyranosyl)-2-deoxy-2-phthalimido-β-D-gluco-pyranosyl]-4,6-O-benzylidene-β-D-mannopyranoside (12) was obtained when 3-O-(2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl)-4,6-di-Oacetyl-2-deoxy-2-phtha-limido-β-D-glucopyranosyl trichloroacetimidate (8) was allowed to react with methyl 3-O-benzyl-4,6-O-benzylidene-β-D-mannopyranoside (11) in presence of trimethylsilyl triflate. Removal of protecting groups then gave the desired trisaccharide.  相似文献   

19.
Abstract

Conformational investigations using 1D TOCSY and ROESY 1H NMR experiments on 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hexopyranosyl)-2-deoxy-β-D-glucopyranose (8) and related disaccharides showed that for steric reasons the C-linked hexopyranosyl ring occurs in the usually unfavoured 1C4 conformation and reconfirmed the structure of 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-2-deoxy-β-D-glucopyranose (5). Glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (13) with acetate 8 using trimethylsilyl triflate as a catalyst afforded the α-D-linked tetrasaccharide 14. A remarkable side product in this reaction was the unsaturated tetrasaccharide 2,3,6-tri-O-benzyl-4-O-[4,6-di-O-acetyl-2,3-dideoxy-2-C-(4,6-di-O-acetyl-2,3-dideoxy-β-D-erythro-hexopyranosyl)-α-D-erythro-hex-2-enopyranosyl]-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (16) where in the C-linked hexopyranosyl ring an isomerization to the β-anomer had taken place to allow for the favoured 4C1 conformation. The tetrasaccharide 14 was deacetylated and hydrogenolyzed to form the fully deprotected tetrasaccharide 18. The 1 C 4 conformation of the C-glycosidic pyranose of this tetrasaccharide was maintained as shown by an in depth NMR analysis of its peracetate 19.  相似文献   

20.
Abstract

The glycosyl donors 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl trichloroacetimidate and 3,4,6-tri-O-benzyl-α-D-fucopyranosyl trichloroacetimidate were activated under neutral conditions with a catalytic amount (0.05 equiv) of lithium triflate and reacted with a series of alcohols including an acid sensitive sugar to give the corresponding glycosides in high yields. The stereoselectivity of the glycosylation was improved by introducing a participating group next to the anomeric position.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号