首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z > or =30. Future experiments can exploit this effect to constrain the cosmic string tension G mu and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of approximately 1 km2 will not provide any useful constraints, future experiments with a collecting area of 10(4)-10(6) km2 covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G mu > or = 10(-10)-10(-12) (superstring/phase transition mass scale >10(13) GeV).  相似文献   

3.
We describe this paper as a Sentimental Journey from Hydrodynamics to Supergravity. Beltrami equation in three dimensions that plays a key role in the hydrodynamics of incompressible fluids has an unsuspected relation with minimal supergravity in seven dimensions. We show that just supergravity and no other theory with the same field content but different coefficients in the lagrangian, admits exact two‐brane solutions where Arnold‐Beltrami fluxes in the transverse directions have been switched on. The rich variety of discrete groups that classify the solutions of Beltrami equation, namely the eigenfunctions of the operator on a three‐torus, are by this newly discovered token injected into the brane world. A new quite extensive playing ground opens up for supergravity and for its dual gauge theories in three dimensions, where all classical fields and all quantum composite operators will be assigned to irreducible representations of discrete crystallographic groups Γ.  相似文献   

4.
We summarize the approach to brane cosmology known as mirage cosmology and use it to determine the Friedmann equation on a 3-brane embedded in different bulk spacetimes all with one or more extra dimensions. Usually, when there is more than one extra dimension the junction conditions, central to the usual brane world scenarios, are difficult to apply. This problem does not arise in mirage cosmology because the brane is treated as a test particle in the background spacetime. We discuss in detail the dynamics of a brane embedded in two specific 10D bulk spacetimes, namely Sch-AdS5 × S5 and a rotating black hole, and from the dynamics—which are now rather more complicated since the brane can move in all the extra dimensions—determine the new dark fluid terms in the brane Friedmann equation. Some of these, such as the cosmological constant term, are seen to be bulk dependent. We then show explicitly how this mirage cosmology approach matches with the familiar junction condition approach when there is just one extra dimension. The issue of a varying speed of light in mirage cosmology is addressed and we find a scenario in which c eff always increases, tending asymptotically to c 0 as the universe expands. Finally some comments are made regarding brane inflation and limitations of the mirage cosmology approach are also discussed.  相似文献   

5.
In this Letter, the cosmological dynamics of a modified holographic dark energy which is derived from the UV/IR duality by considering the black hole mass in higher dimensions as UV cutoff, is investigated in Dvali–Gabadadze–Porrati (DGP) brane world model. We choose Hubble horizon and future event horizon as IR cutoff respectively. And the two branches of the DGP model are both taken into account. When Hubble horizon is considered as IR cutoff, the modified holographic dark energy (HDE) behaves like an effect dark energy that modification of gravity in pure DGP brane world model acts and it can drive the expansion of the universe speed up at late time in ?=−1?=1 branch which in pure DGP model cannot undergo an accelerating phase. When future event horizon acts as IR cutoff, the equation of state parameter of the modified HDE can cross the phantom divide.  相似文献   

6.
We consider the anisotropic evolution of spatial dimensions and the stabilization of internal dimensions in the framework of brane gas cosmology. We observe that the bulk RR field can give an effective potential which prevents the internal subvolume from collapsing. For a combination of (D−3)(D3)-brane gas wrapping the extra dimensions and 4-form RR flux in the unwrapped dimensions, it is possible that the wrapped subvolume has an oscillating solution around the minimum of the effective potential while the unwrapped subvolume expands monotonically. The flux gives a logarithmic bounce to the effective potential of the internal dimensions.  相似文献   

7.
《Physics letters. [Part B]》1999,459(4):489-496
In theories with TeV scale quantum gravity the standard model particles live on a brane propagating in large extra dimensions. Branes may be stabilized at large (sub-millimeter) distances from each other, either due to weak Van der Waals type interactions, or due to an infrared analog of Witten's inverse hierarchy scenario. In particular, this infrared stabilization may be responsible for a large size of extra dimensions. In either case, thermal effects can drive a brief period of the late inflation necessary to avoid the problems with high reheating temperature and the stable unwanted relics. The main reason is that the branes which repel each other at zero temperature can be temporarily glued together by thermal effects. It is crucial that the temperature needed to stabilize branes on top of each other can be much smaller than the potential energy of the bound-state, which drives inflation. After 10–15 e-foldings bound-states cool below the critical temperature and decay ending inflation. The parallel brane worlds get separated at this stage and superstrings (of a sub-millimeter size) get stretched between them. These strings can have the right density in order to serve as a superheavy dark matter.  相似文献   

8.
We present a general setup for inflation in string theory where the inflaton field corresponds to Wilson lines in compact space in the presence of magnetic fluxes. T-dualities and limits on the value of the magnetic fluxes relate this system to the standard D-brane inflation scenarios, such as brane-antibrane inflation, D3/D7 brane inflation and different configurations of branes at angles. This can then be seen as a generalised approach to inflation from open string modes. Inflation ends when the Wilson lines achieve a critical value and an open string mode becomes tachyonic. Then hybrid-like inflation, including its cosmic string remnants, is realized in string theory beyond the brane annihilation picture. Our formalism can be incorporated within flux-induced moduli stabilisation mechanisms in type IIB strings. Also, contrary to the standard D-brane separation, Wilson lines can be considered in heterotic string models. We provide explicit examples to illustrate similarities and differences of our mechanism to D-brane inflation. In particular we present an example in which the η problem present in brane inflation models is absent in our case. We have examples with both blue and red tilted spectral index and remnant cosmic string tension .  相似文献   

9.
We discuss the cosmological evolution of a brane in the D(>6)D(>6)-dimensional black brane spacetime in the context of the Kaluza–Klein (KK) braneworld scheme, i.e., to consider KK compactification on the brane. The bulk spacetime is composed of two copies of a patch of D  -dimensional black three-brane solution. The near-horizon geometry is given by AdS5×S(D−5)AdS5×S(D5) while in the asymptotic infinity the spacetime approaches D-dimensional Minkowski. We consider the brane motion from the near-horizon region toward the spatial infinity, which induces cosmology on the brane. As is expected, in the early times, namely when the brane is located in the near-horizon region, the effective cosmology on the brane coincides with that in the second Randall–Sundrum (RS II) model. Then, the brane cosmology starts to deviate from the RS type one since the dynamics of KK compactified dimensions becomes significant. We find that the brane Universe cannot reach the asymptotic infinity, irrespectively of the components of matter on the brane.  相似文献   

10.
《Nuclear Physics B》2001,609(3):499-517
We analyze the propagation of a scalar field in multidimensional theories which include kinetic corrections in the brane, as a prototype for gravitational interactions in a four-dimensional brane located in a (nearly) flat extra-dimensional bulk. We regularize the theory by introducing an infrared cutoff given by the size of the extra dimensions, R, and a physical ultraviolet cutoff of the order of the fundamental Planck scale in the higher-dimensional theory, M. We show that, having implemented cutoffs, the radius of the extra dimensions cannot be arbitrarily large for M≳1 TeV. Moreover, for finite radii, the gravitational effects localized on the brane can substantially alter the phenomenology of collider and/or table-top gravitational experiments. This phenomenology is dictated by the presence of a massless graviton, with standard couplings to the matter fields, and a massive graviton which couples to matter in a much stronger way. While graviton KK modes lighter than the massive graviton couple to matter in a standard way, the couplings to matter of the heavier KK modes are strongly suppressed.  相似文献   

11.
We investigate three-dimensional black hole solutions in the realm of pure and new massive gravity in 2+1 dimensions induced on a 2-brane embedded in a flat four-dimensional spacetime. There is no cosmological constant neither on the brane nor on the four-dimensional bulk. Only gravitational fields are turned on and we indeed find vacuum solutions as black holes in 2+1 dimensions even in the absence of any cosmological solution. There is a crossover scale that controls how far the three- or four-dimensional gravity manifests on the 2-brane. Our solutions also indicate that local BTZ and SdS3 solutions can flow to local four-dimensional Schwarzschild-like black holes, as one probes from small to large distances, which is clearly a higher dimensional manifestation on the 2-brane. This is similar to the DGP scenario where the effects of extra dimensions for large probed distances along the brane manifest.  相似文献   

12.
G. Dvali  M. Shifman 《Physics Reports》1999,320(1-6):107-118
We discuss theories in which the standard-model particles are localized on a brane embedded in space–time with large compact extra dimensions, whereas gravity propagates in the bulk. In addition to the ground state corresponding to a straight infinite brane, such theories admit a (one parameter) family of stable configurations corresponding to branes wrapping with certain periodicity around the extra dimension(s) when one moves along a noncompact coordinate (tilted walls). In the effective four-dimensional field-theory picture, such walls are interpreted as one of the (stable) solutions with the constant gradient energy, discussed earlier [1 and 2]. In the cosmological context their energy “redshifts” by the Hubble expansion and dissipates slower than the one in matter or radiation. The tilted wall eventually starts to dominate the Universe. The upper bound on the energy density coincides with the present critical energy density. Thus, this mechanism can become significant any time in the future. The solutions we discuss are characterized by a tiny spontaneous breaking of both the Lorentz and rotational invariances. Small calculable Lorentz noninvariant terms in the standard model Lagrangian are induced. Thus, the tilted walls provide a framework for the spontaneous breaking of the Lorentz invariance.  相似文献   

13.
We propose a new scenario of neutrino masses with a Higgs triplet (xi(++),xi(+),xi(0)) in a theory of large extra dimensions. Lepton number violation in a distant brane acts as the source of a very small trilinear coupling of xi to the standard Higgs doublet in our brane. Small realistic Majorana neutrino masses are naturally obtained with the fundamental scale M(*) approximately O(1) TeV, foretelling the possible discovery of xi (m(xi) less, similarM(*)) at future colliders. Decays of xi(++) into same-sign dileptons are fixed by the neutrino mass matrix. Observation of &mgr;-e conversion in nuclei is predicted.  相似文献   

14.
Starting from a sigma‐model for a doubled target‐space geometry, we show that the number of target‐space dimensions can be reduced by half through a gauging procedure. We apply this formalism to a class of backgrounds relevant for double field theory, and illustrate how choosing different gaugings leads to string‐theory configurations T‐dual to each other. We furthermore discuss that given a conformal doubled theory, the reduced theories are conformal as well. As an example we consider the three‐dimensional WZW model and show that the only possible reduced backgrounds are the cigar and trumpet CFTs in two dimensions, which are indeed T‐dual to each other.  相似文献   

15.
TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the "black hole plus brane" system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.  相似文献   

16.
If large extra dimensions exist in nature, supernova (SN) cores will emit large fluxes of Kaluza-Klein gravitons, producing a cosmic background of these particles with energies and masses up to about 100 MeV. Radiative decays then give rise to a diffuse cosmic gamma-ray background with E(gamma) approximately less than 100 MeV which is well in excess of the observations if more than 0.5%-1% of the SN energy is emitted into the new channel. For two extra dimensions we derive a conservative bound on their radius of R approximately less than 0.9 x 10(-4) mm; for three extra dimensions it is R approximately less than 1.9 x 10(-7) mm.  相似文献   

17.
We consider a five-dimensional model with geometry \(\mathcal{M} = \mathcal{M}_4 \times \mathcal{S}_1\), with compactification radius R. The Standard Model particles are localized on a brane located at \(y=0\), with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance \(d=y/R\), with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (\(d=0\)), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.  相似文献   

18.
A new class is introduced of M2‐branes solutions of d=11 supergravity that include internal fluxes obeying Englert equation in 7‐dimensions. A simple criterion for the existence of Killing spinors in such backgrounds is established. Englert equation is viewed as the generalization to d=7 of Beltrami equation defined in d=3 and it is treated accordingly. All 2‐brane solutions of minimal d=7 supergracity can be uplifted to d=11 and have supersymmetry. It is shown that the simple group PSL(2, 7) is crystallographic in d=7 having an integral action on the A7 root lattice. By means of this point‐group and of the T7 torus obtained quotiening with the A7 root lattice we were able to construct new M2 branes with Englert fluxes and . In particular we exhibit here an solution depending on 4‐parameters and admitting a large non abelian discrete symmetry, namely . The dual field theories have the same symmetries and have complicated non linear interactions.  相似文献   

19.
We describe a model for the scalar sector where all interactions occur either at an ultra-high scale, ΛU~1016-1019 GeV, or at an intermediate scale, ΛI = 109-1011 GeV. The interaction of physics on these two scales results in an SU(2) Higgs condensate at the electroweak (EW) scale, ΛEW, through a seesaw-like Higgs mechanism, , while the breaking of the SM SU(2) x U(1) gauge symmetry occurs at the intermediate scale ΛI . The EW scale is, therefore, not fundamental but is naturally generated in terms of ultra-high energy phenomena and so the hierarchy problem is alleviated. We show that the class of such "seesaw Higgs" models predict the existence of sub-eV neutrino masses which are generated through a "two-step" seesaw mechanism in terms of the same two ultra-high scales: . The neutrinos can be either Dirac or Majorana, depending on the structure of the scalar potential. We also show that our seesaw Higgs model can be naturally embedded in theories with tiny extra dimensions of size fm, where the seesaw induced EW scale arises from a violation of a symmetry at a distant brane; in particular, in the scenario presented there are seven tiny extra dimensions. Received: 19 August 2004, Revised: 27 July 2005, Published online: 14 October 2005  相似文献   

20.
The proton decay problem and the negative brane tension problem in the original Randall–Sundrum model can be resolved by interpreting the Planck scale brane as the visible sector brane. The hierarchy problem is resolved with supersymmetry, and the TeV scales for soft masses and μ in supersymmetric models are generated by the physics at the intermediate scale (1011–13 GeV) brane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号