首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent publication we presented a method to obtain highly resolved NMR spectra in the presence of an inhomogeneous B(0) field with the help of a matched RF gradient. If RF gradient pulses are combined with "ideal" 90 degrees pulses to form inhomogeneous z rotation pulses, the line broadening caused by the B(0) gradient can be refocused, while the full chemical shift information is maintained. This approach is of potential use for NMR spectroscopy in an inhomogeneous magnetic field produced by an "ex-situ" surface spectrometer. In this contribution, we extend this method toward two-dimensional spectroscopy with high resolution in one or both dimensions. Line narrowing in the indirect dimension can be achieved by two types of nutation echoes, thus leading to depth-sensitive NMR spectra with full chemical shift information. If the nutation echo in the indirect dimension is combined with a stroboscopic acquisition using inhomogeneous z-rotation pulses, highly resolved two-dimensional correlation spectra can be obtained in matched field gradients. Finally, we demonstrate that an INEPT coherence transfer from proton to carbon spins is possible in inhomogeneous B(0) fields. Thus, it is possible to obtain one-dimensional (13)C NMR spectra with increased sensitivity and two-dimensional HETCOR spectra in the presence of B(0) gradients of 0.4 mT/cm. These schemes may be of some value for ex-situ NMR analysis of materials and biological systems.  相似文献   

2.
The combined use of two unconventional NMR diffusometry techniques permits measurements of the self-diffusion coefficient of fluids confined in porous media in the time range from 100 microseconds to seconds. The fringe field stimulated echo technique (FFStE) exploits the strong steady gradient in the fringe field of a superconducting magnet. Using a standard 9.4 T (400 MHz) wide-bore magnet, for example, the gradient is 22 T/m at 375 MHz proton resonance and reaches 60 T/m at 200 MHz. Extremely short diffusion times can be probed on this basis. The magnetization grid rotating frame imaging technique (MAGROFI) is based on gradients of the radio frequency (RF) field. The RF gradients not necessarily need be constant since the data are acquired with spatial resolution along the RF gradient direction. MAGROFI is also well suited for unilateral NMR applications where all fields are intrinsically inhomogeneous. The RF gradients reached depend largely on the RF coil diameter and geometry. Using a conic shape, a value of at least 0.3 T/m can be reached which is suitable for long-time diffusion measurements. Both techniques do not require any special hardware and can be implemented on standard high RF power NMR spectrometers. As an application, the influence of the tortuosity increasing with the diffusion time is examined in a saturated porous silica glass.  相似文献   

3.
An apparatus is described for delivering bipolar pulsed magnetic-field gradients of varying amplitude and duration for NMR self-diffusion measurements. Unlike previous designs, this gradient driver precisely regulates the total charge delivered to the gradient coil independent of coil inductance and resistance. This allows for matching of the read- and write-gradient pulses within 10 ppm, which is necessary to accurately obtain the echo maximum. Experimental and calculated normalized signals for various read-write-gradient mismatches illustrate how small mismatches can result in significant signal reduction (8% signal loss for a 33 ppm mismatch between 312 G/cm; 3 ms read-write-gradient pulses). Results and observations indicate that this instrument, contrary to others, obtains the maximum signal when the read and write gradients are matched.  相似文献   

4.
A method for in-plane imaging of large objects as compared to the RF coil is proposed based on the use of a single specially designed surface coil, without using B(0) gradients. A constant B(1) gradient was generated along the main axis of a ladder-shaped coil, and RF-encoding along the direction of the gradient made it possible to obtain spin-density profiles. Successive acquisitions of profiles obtained by translation of the NMR coil resulted in distorted images-due to the presence of non-zero gradients perpendicular to the constant gradient-that were successfully processed using a mathematical treatment based on linear combinations of calculated altered images from single-pixel objects. Copyright 2000 Academic Press.  相似文献   

5.
Two different concepts of gradient current power supplies are introduced, which are suitable for the generation of ultra-high intensity pulsed magnetic field gradients of alternating polarity. The first system consists of a directly binary coded current source (DBCCS). It yields current pulses of up to ±120 A and a maximum voltage across the gradient coil of ±400 V. The second system consists of two TECHRON 8606 power supplies in push–pull configuration (PSPPC). It yields current pulses of up to ±100 A and a maximum voltage across the gradient coil of ±300 V. In combination with actively shielded anti-Helmholtz gradient coils, both systems are used routinely in NMR diffusion studies with unipolar pulsed field gradients of up to 35 T/m. Until now, alternating pulsed field gradient experiments were successfully performed with gradient intensities of up to ±25 T/m (DBCCS) and ±35 T/m (PSPPC), respectively. Based on the observation of the NMR spin echo in the presence of a small read gradient, procedures to test the stability and the matching of such ultra-high pulsed field gradient intensities as well as an automated routine for the compensation of possible mismatches are introduced. The results of these procedures are reported for the PSPPC system.  相似文献   

6.
Thoracic and abdominal magnetic resonance imaging studies generally require some type of compensation for respiratory and cardiac motions in order to yield artifact-free images with good signal-to-noise ratio. Most techniques for respiratory compensation require the use of a non-NMR sensing device to monitor the subject's chest motion, while cardiac motion compensation generally requires the use of ECG leads within the magnet. An inductive pickup coil placed on the subject's chest is perhaps the simplest and least expensive means of monitoring respiration in a MR scanner. However, due to inductive coupling between the pickup coil, radio frequency resonator and gradient set, this arrangement often results in both NMR and respiratory signal artifacts and can also present a burn hazard to the subject depending on the placement and orientation of the pickup coil. Moreover, the presence of a pickup coil on the chest can degrade local magnetic field homogeneity and thus degrade image quality. Similar problems arise when ECG leads must be connected to the subject for cardiac monitoring and gating. To preserve the benefits of the simple pickup coil while circumventing these limitations, a "lever-coil" sensor is presented in which a pickup coil is mechanically coupled to the subject but is not located within the resonator or gradient coil. This results in much lower mutual inductance between the pickup coil and the resonator or gradients. The optimization of the geometry of the apparatus is discussed and lever-coil signal traces are shown which demonstrate the sensor's ability to simultaneously detect both respiratory and cardiac motion in mice. Finally, respiratory-gated and cardiac-triggered spin echo images of the rat abdomen and mouse heart are presented to demonstrate the utility of the lever-coil sensor.  相似文献   

7.
A new method for NMR characterization of mechanical waves, based upon radiofrequency field gradient for motion encoding, is proposed. A binomial B1 gradient excitation scheme was used to visualize the mobile spins undergoing a periodic transverse mechanical excitation. A simple model was designed to simulate the NMR signal as a function of the wave frequency excitation and the periodicity of the NMR pulse sequence. The preliminary results were obtained on a gel phantom at low vibration frequencies (0-200 Hz) by using a ladder-shaped coil generating a nearly constant RF field gradient along a specific known direction. For very small displacements and/or B1 gradients, the NMR signal measured on a gel phantom was proportional to the vibration amplitude and the pulse sequence was shown to be selective with respect to the vibration frequency. A good estimation of the direction of vibrations was obtained by varying the angle between the motion direction and the B1 gradient. The method and its use in parallel to more conventional MR elastography techniques are discussed. The presented approach might be of interest for noninvasive investigation of elastic properties of soft tissues and other materials.  相似文献   

8.
The amplitudes of gradient-echoes produced using static field gradients are sensitive to diffusion of tissue water during the echo evolution time. Gradient-echoes have been used to produce MR images in which image intensity is proportional to the self-diffusion coefficient of water. However, such measurements are subject to error due to the presence of background magnetic field gradients caused by variations in local magnetic susceptibility. These local gradients add to the applied gradients. The use of radiofrequency (RF) gradients to produce gradient-echoes may avoid this problem. The RF magnetic field is orthogonal to the offset field produced by local magnetic susceptibility gradients. Thus, the effect of the local gradients on RF gradient-echo amplitude is small if the RF field is strong enough to minimize resonance offset effects. The effects of susceptibility gradients can be further reduced by storing magnetization longitudinally during the echo evolution period. A water phantom was used to evaluate the effects of background gradients on the amplitudes of RF gradient-echoes. A surface coil was used to produce an RF gradient of between 1.3 and 1.6 gauss/cm. Gradient-echoes were detected with and without a 0.16 gauss/cm static magnetic field gradient applied along the same direction as the RF gradient. The background static field gradient had no significant effect on the decay of RF gradient-echo amplitude as a function of echo evolution time. In contrast, the effect of the background gradient on echoes produced using a 1.6 gauss/cm static field gradient is calculated to be significant. This analysis suggests that RF gradient-echoes can produce MR images in which signal intensity is a function of the self-diffusion coefficient of water, but is not significantly affected by background gradients.  相似文献   

9.
A new, portable NMR magnet with a tailored magnetic field profile and a complementary radio frequency sensor have been designed and constructed for the purpose of probing in situ the sub-surface porosity of cement based materials in the built environment. The magnet is a one sided device akin to a large NMR-MOUSE with the additional design specification of planes of constant field strength /B0/ parallel to the surface. There is a strong gradient G in the field strength perpendicular to these planes. As with earlier GARField magnets, the ratio G//:B0/ is a system constant although the method of achieving this condition is substantially different. The new magnet as constructed is able to detect signals 50mm (1H NMR at 3.2 MHz) away from the surface of the magnet and can profile the surface layers of large samples to a depth of 35-40 mm by moving the magnet, and hence the resonant plane of the polarising field, relative to the sample surface. The matching radio frequency excitation/detector coil has been designed to complement the static magnetic field such that the polarising B0 and sensing B1 fields are, in principal, everywhere orthogonal. Preliminary spatially resolved measurements are presented of cement based materials, including two-dimensional T1-T2 relaxation correlation spectra.  相似文献   

10.

Purpose

TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2 T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume.

Materials and Methods

A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements.

Results

Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved.

Conclusion

The Maxwell (sine)–Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs.  相似文献   

11.
In standard cylindrical gradient coils consisting of wires wound in a single layer, the rapid increase in coil resistance with efficiency is the limiting factor in achieving very large magnetic field gradients. This behavior results from the decrease in the maximum usable wire diameter as the number of turns is increased. By adopting a multilayer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favorable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. By extending the theory used to design standard cylindrical gradient coils, we have developed mathematical expressions which allow the design of multilayer coils, and the evaluation of their performance. These expressions have been used to design a four-layer,z-gradient coil of 8 mm inner diameter, which has an efficiency of 1.73 Tm−1A−1, a resistance of 1.8 Ω, and an inductance of 50 μH. This coil produces a gradient which deviates from linearity by less than 5% within a central cylindrical region of 4.5 mm length and 4.5 mm diameter. A coil has been constructed from this design and tested in simple imaging and pulsed gradient spin echo experiments. The resulting data verify the predicted coil performance, thus demonstrating the advantages of using multilayer coils for experiments requiring very large magnetic field gradients.  相似文献   

12.
Nutation echoes are generated by radiofrequency (RF) pulses with an inhomogeneous amplitude, B(1) = B(1)(r), in inhomogeneous magnetic fields, B(0) = B(0)(r). The two gradients of strengths G(1) and G(0), respectively, must be aligned in parallel for a maximum echo signal. After two RF pulses, two echoes appear at times tau(a) = 2 tau(1) + tau(2) + (G(1)/G(0))tau(1) and tau(b) = 2 tau(1) + tau(2) + 2(G(1)/G(0))tau(1), where tau(1) is the RF pulse duration and tau(2) the interpulse interval. It is shown that these echoes can favorably be employed for the determination of self-diffusion coefficients even in the poor experimental situation one often faces in low-resolution or low-field NMR. The signal intensity is comparable to that of ordinary Hahn echoes. Diffusion coefficients and spin-lattice relaxation times can be evaluated from the same experimental data set if both nutation echoes are recorded. Test experiments are in good agreement with literature data. Applications of the technique to "inside out" NMR, well logging NMR, surface coil NMR, toroid cavity NMR, etc., are suggested.  相似文献   

13.
该文提出了一种基于实际翻转角成像(Actual Flip-angle Imaging,AFI)的快速发射场测量方法(Fast AFI,FAFI),将多次激发平面回波成像(Multi-shot Echo Planar Imaging,Multi-shot EPI)的采集方式运用于AFI发射场(B_1~+)测量中,充分利用AFI序列中采集的等待时间,高倍数加速了水模和人体头部、腹部及盆腔的发射场测量.该文在水模和人体(n=16)实验中,验证了采用FAFI序列得到的B_1~+测量结果与AFI结果的一致性.FAFI序列大幅加速了发射场测量,为实现动态B_1~+匀场(B_1~+shimming)和快速局部激发提供了高效的发射场测量方法.  相似文献   

14.
An insert gradient head coil with built-in X, Y, and Z gradients was used for localized proton spectroscopy in the brain of healthy volunteers, using short echo time stimulated echo acquisition mode (STEAM) sequences. Volume of interest size was 3.4 ml, repetition time was 6.0 s, and echo times were 10 and 20 ms, respectively. Good quality proton spectra with practically no eddy current artefacts were acquired allowing observation of strongly coupled compounds, and compounds with short T2 relaxation times. The gradient head coil thus permits further studies of compounds such as glutamine/glutamate and myo-inositols. These compounds were more prominent within grey matter than within white matter. Rough estimations of metabolite concentrations using water as an internal standard were in good agreement with previous reports.  相似文献   

15.
Linear-mode conversion (LMC) of Langmuir waves to radiation near the plasma frequency at density gradients is important for space and astrophysical phenomena. We study LMC in warm magnetized plasmas using numerical electron fluid simulations when the density gradient is parallel to the ambient magnetic field (B0). We demonstrate that LMC can produce extraordinary- (x-) as well as ordinary- (o-) mode radiation from Langmuir waves, contrary to earlier expectations of o mode only. Equal amounts of o- and x-mode radiation are produced in the unmagnetized limit. The x-mode efficiency decreases as B0 increases, while the o-mode efficiency oscillates due to interference between incoming and reflected Langmuir waves. Both x and o modes should be produced for typical coronal and interplanetary parameters, alleviating the depolarization problem for type III solar radio bursts.  相似文献   

16.
To understand the behavior of many NMR experiments, it is important to determine the spatial distribution of the B1 field. In this paper, we show how this distribution can be mapped independently of spin density, coil responsiveness, and nonlinearities of the B0 field gradients. As a by-product we obtain a map of the (possibly nonlinear) spatial variation of the B0 field gradients used in the imaging procedure.  相似文献   

17.
Spin echo formation in magnetic field gradients in the presence of fast stochastic motion is studied for hyperpolarized 3He gas at different diffusivities. The fast translational motion leads to frequency shifts already during echo formation, which can be described analytically for a linear gradient. Despite complete signal loss at the position of the spin echo itself, considerable intensity can be preserved at an earlier time (sqrt[2]tau rather than 2tau, where tau is the pulse delay). Hence, the phenomenon is designated as a pseudo spin echo.  相似文献   

18.
Image contrast in intermolecular double-quantum coherence (iDQC) imaging of a pig tail was investigated on a 7.05-T microimaging scanner. In addition to TR (repetition time) and TE (echo time), the time interval tau between radio frequency pulses during iDQC evolution and the areas under the iDQC-encode gradients in the iDQC imaging sequence were also used to manipulate image contrast. When suitable imaging parameters were selected, images with unique contrast, such as those with certain regions of the sample highlighted, were obtained without using contrast agents. The effects of iDQC-encode gradient on image contrast were studied quantitatively, and the unique contrast imposed by the related diffusion weighting was also shown. Experimental results demonstrated that the iDQC images have contrast fundamentally different from the conventional single-quantum coherence images.  相似文献   

19.
Gradient moment nulling techniques for refocussing of spin dephasing resulting from movement during application of magnetic resonance imaging gradients have gained widespread application. These techniques offer advantages over conventional imaging gradients by reducing motion artifacts due to intraview motion, and by recovering signal lost from spin dephasing. This paper presents a simple technique for designing multiecho imaging gradient waveforms that refocus dephasing from the interaction of imaging gradients and multiple derivatives of position. Multiple moments will be compensated at each echo. The method described relies on the fact that the calculation of time moments for nulled moment gradient waveforms is independent of the time origin chosen. Therefore, waveforms used to generate the second echo image for multiple echo sequences with echo times given by TEn = TE1 + (n - 1) * (TE2 - TE1) may also be used for generation of the third and additional echo images. All echoes will refocus the same derivatives of position. Multiecho, multimoment refocussing (MEM-MO-RE) images through the liver in a patient with ampullary adenocarcinoma metastatic to the liver demonstrate the application of the method in clinical scanning.  相似文献   

20.
The electromagnet provides a favorable environment for certain applications of NMR microscopy. These include plant imaging experiments and measurements of slow molecular diffusion, where high magnetic field gradients for the pulsed gradient spin echo (PGSE) technique are required. In this paper, two probes designed specifically for these two applications are described. In the first case, the open space within the probe has been maximized in order to incorporate environmental support systems for the plant, while in the second the smallest possible PGSE gradient coil former has been used to maximize the gradient strength. Examples are given of Dynamic NMR Microscopy experiments on a castor bean stem and on poly(ethylene oxide)/water solutions under shear thinning conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号