首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pyrimidine base pairs in DNA duplexes selectively capture metal ions to form metal ion-mediated base pairs, which can be evaluated by thermal denaturation, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. In this critical review, we discuss the metal ion binding of pyrimidine bases (thymine, cytosine, 4-thiothymine, 2-thiothymine, 5-fluorouracil) in DNA duplexes. Thymine-thymine (T-T) and cytosine-cytosine (C-C) base pairs selectively capture Hg(II) and Ag(I) ions, respectively, and the metallo-base pairs, T-Hg(II)-T and C-Ag(I)-C, are formed in DNA duplexes. The metal ion binding properties of the pyrimidine-pyrimidine pairs can be changed by small chemical modifications. The binding selectivity of a metal ion to a 5-fluorouracil-5-fluorouracil pair in a DNA duplex can be switched by changing the pH of the solution. Two silver ions bind to each thiopyrimidine-thiopyrimidine pair in the duplexes, and the duplexes are largely stabilized. Oligonucleotides containing these bases are commercially available and can readily be applied in many scientific fields (86 references).  相似文献   

2.
This work demonstrates single-molecule imaging of metal-ion induced double-stranded DNA formation in DNA nanostructures. The formation of the metal ion-mediated base pairing in a DNA origami frame was examined using C-Ag-C and T-Hg-T metallo-base pairs. The target DNA strands containing consecutive C or T were incorporated into the DNA frame, and the binding was controlled by the addition of metal ions. Double-stranded DNA formation was monitored by observing the structural changes in the incorporated DNA strands using high-speed atomic force microscopy (AFM). Using the T-Hg-T base pair, the dynamic formation of unique dsDNA and its dissociation were observed. The formation of an unusual shape of dsDNA with consecutive T-Hg-T base pairs was visualized in the designed nanoscale structure.  相似文献   

3.
Single nucleotide polymorphisms (SNPs) are base differences in the human genome. These differences are favorable markers for genetic factors including those associated with risks of complex diseases and individual responses to drugs. When two duplex DNAs with different types of SNPs are mixed and reannealed, the two novel heteroduplexes containing mismatched base pairs are formed in addition to the two initial perfectly matched homoduplexes. Heteroduplex analysis recognizing the newly formed mismatched base pairs is useful for SNP detection. Various strategies to detect the mismatched base pairs were devised due to the potential applications of SNPs. However, they were not always convenient and accurate. Here, we propose a novel strategy to detect the mismatched base pairs by the specific interaction between the Hg2+ ion and a T:T mismatched base pair and that between the Ag+ ion and a C:C mismatched base pair. UV melting indicated that the melting temperature of only the heteroduplexes with the T:T and C:C mismatched base pair specifically increased on adding the Hg2+ and Ag+ ion, respectively. Fluorescence resonance energy transfer analyses indicated that the intensity of fluorophore emission of only the fluorophore and quencher-labeled heteroduplexes with the T:T and C:C mismatched base pair specifically decreased on adding the Hg2+ and Ag+ ion, respectively. We propose that the addition of the metal ion could be a convenient and accurate strategy to detect the mismatched base pair in the heteroduplex. This novel strategy might make the heteroduplex analysis easy and eventually lead to better SNP detection.  相似文献   

4.
Hg(II) interacted site selectively with only one of three deoxyribooligonucleotides examined; these "oligos" each had a different number of unmatched T residues. Thus, Hg(II) formed an intrastrand T-Hg-T cross-link between the first and fourth T residues of the hairpin, d(GCGCTTTTGCGC) (T4). The DNA strand formed a loop around the Hg, as if the Hg atom had been lassoed. The interactions of Hg(II) with two other oligos, d(ATGGGTTCCCAT) (T2) and d(GCGCTTTGCGC) (T3), were less specific. Previously, we found that at high DNA and salt concentrations, T2 was a mixture of hairpin and duplex forms while T3 and T4 had the hairpin form; modeling studies showed that in the free T4 hairpin the two T's at the ends of the (T)(4) loop form a T.T wobble base pair. Only in T4 are the T residues positioned to form an intrastrand cross-link readily. The Hg(II)-oligo adducts formed as a function of added Hg(II) were investigated by titrations monitored by UV, CD, and (1)H NMR spectroscopy. The appearance of a new set of (1)H signals with the concomitant decay of the free oligo (1)H signals indicated that 1:1 Hg(II):T2, 1.5:1 Hg(II):T3, and 1:1 Hg(II):T4 adducts were formed with Hg(NO(3))(2). In H(2)O, these adducts all had spectra with very downfield signals for the exchangeable TN(3)H and GN(1)H groups, a characteristic of base-paired regions. All upfield N(3)H signals from the (T)(2) and (T)(3) sequences of the free oligo disappeared in the spectra of the 1:1 Hg(II):T2 and 1.5:1 Hg(II):T3 adducts. The disappearance of the NH signals, the UV spectral changes, and the stoichiometries (1:1 Hg(II):T2 and 1.5:1 Hg(II):T3) indicate that these adducts are duplexes containing two and three T-Hg-T interstrand cross-links for T2 and T3, respectively. The (1)H and (13)C signals of the 1:1 Hg(II):T4 adduct in D(2)O were nearly completely assigned by 2D NMR spectroscopy. The spectrum of the adduct in H(2)O had only two of the four original TN(3)H signals from the (T)(4) sequence present in the spectrum of T4; this result is consistent with the presence of a TN3-Hg-TN3 cross-link. The (13)C chemical shift changes upon Hg(II) binding indicated that the TN3-Hg-TN3 cross-link was between the T's at each end of the (T)(4) loop. The NOESY, CD, and UV spectra were all consistent with a hairpin conformation for the 1:1 Hg(II):T4 adduct. A hairpin conformation also appeared reasonable from molecular modeling calculations. In conclusion, the length of the central (T)(n)() sequence influenced the type of T-Hg-T cross-link formed and, in turn, the conformation of the adducts. For (T)(2) and (T)(3), interstrand T-Hg-T cross-linking favored the duplex form. In contrast, for (T)(4), intrastrand T-Hg-T cross-linking stabilized the hairpin form.  相似文献   

5.
Metal atoms with a closed-shell electronic structure and positive charge as for example the Au(I), Pt(II), Ag(I), Tl(I) or Hg(II) atoms do not in some compounds repel each other due to the so-called metallophilic attraction (P. Pyykk?, Chem. Rev., 1997, 97, 597-636). Here we highlight the role of the Hg(II)Hg(II) metallophilic attraction between the consecutive metal-mediated mismatched base pairs of nucleic acids. Usually, the base stacking dominates the non-covalent interactions between steps of native nucleic acids. In the presence of metal-mediated base pairs these non-covalent interactions are enriched by the metal-base interactions and the metallophilic attraction. The two interactions arising due to the metal linkage of the mismatches were found in this study to have a stabilizing effect on nucleic acid structure. The calculated data are consistent with recent experimental observations. The stabilization due to the metallophilic attraction seems to be a generally important concept for the nucleic acids containing heavy metals with short contacts.  相似文献   

6.
The Hg(2+) ion stabilizes the thymine-thymine mismatched base pair and provides new ways of creating various DNA structures. Recently, such T-Hg-T binding was detected by the Raman spectroscopy. In this work, detailed differences in vibrational frequencies and Raman intensity patterns in the free TpT dinucleotide and its metal-mediated complex (TpT·Hg)(2) are interpreted on the basis of quantum chemical modeling. The computations verified specific marker Raman bands indicating the effect of mercury binding to DNA. Although the B3LYP functional well-describes the Raman frequencies, a dispersion correction had to be added for all atoms including mercury to obtain realistic geometry of the (TpT·Hg)(2) dimer. Only then, the DFT complex structure agreed with those obtained with the wave function-based MP2 method. The aqueous solvent modeled as a polarizable continuum had a minor effect on the dispersion interaction, but it stabilized conformations of the sugar and phosphate parts. A generalized definition of internal coordinate force field was introduced to monitor covalent bond mechanical strengthening and weakening upon the Hg(2+) binding. Induced vibrational frequency shifts were rationalized in terms of changes in electronic structure. The simulations thus also provided reliable insight into the complex structure and stability.  相似文献   

7.
Using density functional theory calculations, we investigated the structural, energetic, electronic, and optical properties of recently synthesized duplex DNA containing metal‐mediated base pairs. The studied duplex DNA consists of three imidazole (Im) units linked through metal (Im‐M‐Im, M=metal) and four flanking A:T base pairs (two on each side). We examined the role of artificial base pairing in the presence of two distinctive metal ions, diamagnetic Ag+ and magnetic Cu2+ ions, on the stability of duplex DNA. We found that metal‐mediated base pairs form stable duplex DNA by direct metal ion coordination to the Im bases. Our results suggest a higher binding stability of base pairing mediated by Cu2+ ions than by Ag+ ions, which is attributed to a larger extent of orbital hybridization. We furthermore found that DNA modified with Im‐Ag+‐Im shows the low‐energy optical absorption characteristic of π–π*orbital transition of WC A:T base pairs. On the other hand, we found that the low‐energy optical absorption peaks for DNA modified with Im‐Cu2+‐Im originate from spin–spin interactions. Additionally, this complex exhibits weak ferromagnetic coupling between Cu2+ ions and strong spin polarization, which could be used for memory devices. Moreover, analyzing the role of counter ions (Na+) and the presence of explicit water molecules on the structural stability and electronic properties of the DNA duplex modified with Im‐Ag+‐Im, we found that the impact of these two factors is negligible. Our results are fruitful for understanding the experimental data and suggest a potential route for constructing effective metal‐mediated base pairs in duplex DNA for optoelectronic applications.  相似文献   

8.
Ferrocenylcarbodiimide (1), which is known to react with a guanine (G) or thymine (T) base of single stranded DNA, was allowed to react with DNA duplex having a single mismatched base pair of G-T, T-T, or T-cytosine (C). Electrophoreograms of the reaction mixture showed that 1 could react with G or T base of the mismatched sites on the DNA duplex. However, 1 also reacted with the G base of the terminal site on the DNA duplex. This showed that 1 can react with an unpaired base or unstable base pair such as a terminal or mismatched base on the DNA duplex. Electrochemical mismatch detection could be achieved after hybridization of the ferrocenylated mismatched DNA duplex with a selected DNA probe-immobilized electrode. These results revealed that 1 has a potentiality of serving as a labeling reagent of mismatched bases on the DNA duplex, which is important in the search for heterozygous single nucleotide polymorphisms (SNPs).  相似文献   

9.
Numerous applications of metal‐mediated base pairs (metallo‐base‐pairs) to nucleic acid based nanodevices and genetic code expansion have been extensively studied. Many of these metallo‐base‐pairs are formed in DNA and RNA duplexes containing Watson–Crick base pairs. Recently, a crystal structure of a metal–DNA nanowire with an uninterrupted one‐dimensional silver array was reported. We now report the crystal structure of a novel DNA helical wire containing HgII‐mediated T:T and T:G base pairs and water‐mediated C:C base pairs. The Hg‐DNA wire does not contain any Watson–Crick base pairs. Crystals of the Hg‐DNA wire, which is the first DNA wire structure driven by HgII ions, were obtained by mixing the short oligonucleotide d(TTTGC) and HgII ions. This study demonstrates the potential of metallo‐DNA to form various structural components that can be used for functional nanodevices.  相似文献   

10.
Metal-mediated base pairs by the interaction between metal ions and artificial bases in oligonucleotides has been widely used in DNA nanotechnology and biosensing technique. Using isothermal titration calorimetry, circular dichroism spectroscopy and fluorescence spectroscopy, the folding process of T-C-rich oligonucleotides (TCO) induced by Hg2+ and Ag+ with the synthetic sequence d(T6C6T6C6T6C6T6) was studied and analyzed. Although thermodynamic data predict that TCO should initially fold into a relatively stable hairpin through two possible pathways of conformational transitions whether Hg2+ or Ag+ were added at first, the mechanisms and final products between the two are entirely different from isothermal titration calorimetry outcomes. When Hg2+ were added first, the haipin was formed through T-Hg-T structure with further stabilization by C-Ag-C after Ag+ addition. However, it is proposed that an unusual metal-base pair for Ag+ binding is generated instead classical C-Ag-C when Ag+ was injected first. Moreover, further confirmation of this unconventional metal-base pair T-Ag-C was verified by circular dichroism and fluorescence spectroscopy.  相似文献   

11.
Metal‐mediated base pairs formed by the coordination of metal ions to natural or artificial bases impart unique chemical and physical properties to nucleic acids and have attracted considerable interest in the field of nanodevices. AgI ions were found to mediate DNA polymerase catalyzed primer extension through the formation of a C–AgI–T base pair, as well as the previously reported C–AgI–A base pair. The comparative susceptibility of dNTPs to AgI‐mediated enzymatic incorporation into the site opposite cytosine in the template was shown to be dATP>dTTP?dCTP. Furthermore, two kinds of metal ions, AgI and HgII, selectively mediate the incorporation of thymidine 5′‐triphosphate into sites opposite cytosine and thymine in the template, respectively. In other words, the regulated incorporation of different metal ions into programmed sites in the duplex by DNA polymerase was successfully achieved.  相似文献   

12.
Recently, we reported the first artificial nucleoside for alternative DNA base pairing through metal complexation (J. Org. Chem. 1999, 64, 5002-5003). In this regard, we report here the synthesis of a hydroxypyridone-bearing nucleoside and the incorporation of a neutral Cu(2+)-mediated base pair of hydroxypyridone nucleobases (H-Cu-H) in a DNA duplex. When the hydroxypyridone bases are incorporated into the middle of a 15 nucleotide duplex, the duplex displays high thermal stabilization in the presence of equimolar Cu(2+) ions in comparison with a duplex containing an A-T pair in place of the H-H pair. Monitoring temperature dependence of UV-absorption changes verified that a Cu(2+)-mediated base pair is stoichiometrically formed inside the duplex and dissociates upon thermal denaturation at elevated temperature. In addition, EPR and CD studies suggested that the radical site of a Cu(2+) center is formed within the right-handed double-strand structure of the oligonucleotide. The present strategy could be developed for controlled and periodic spacing of neutral metallobase pairs along the helix axis of DNA.  相似文献   

13.
To evaluate the possibility of introducing azole nucleosides as building blocks for metal-mediated base pairs in artificial oligonucleotides, imidazole nucleoside, 1,2,4-triazole nucleoside and tetrazole nucleoside have been synthesized and characterized. The X-ray crystal structures of p-toluoyl-protected 1,2,4-triazole and tetrazole nucleosides are reported. Contrary to the situation primarily found for deoxyribonucleosides, the sugar moieties adopt C3'-endo conformations. The acidity of the beta nucleosides increases with increasing number of nitrogen ring atoms, giving pKa values of 6.01 +/- 0.05, 1.32+/-0.05 and <-3, respectively. This decrease in basicity results in a decreasing ability to form 2:1 complexes with linearly coordinating metal ions such as Ag+ and Hg2+. In all cases, the Ag+ complexes are of higher stability than the corresponding Hg2+ complexes. Whereas imidazole nucleoside forms highly stable 2:1 complexes with both metal ions (estimated log beta2 values of >10), only Ag+ is able to reach this coordination pattern in the case of triazole nucleoside (log beta2 = 4.3 +/- 0.1). Tetrazole nucleoside does not form 2:1 complexes at all under the experimental conditions used. These data suggest that imidazole nucleoside, and to a lesser extent 1,2,4-triazole nucleoside, are likely candidates for successful incorporation as ligands in oligonucleotides based on metal-mediated base pairs. DFT calculations further corroborate this idea, providing model complexes for such base pairs with glycosidic bond distances (10.8-11.0 Angstroms) resembling those in idealized B-DNA (10.85 Angstroms).  相似文献   

14.
Introduction of artificial metal–ligand base pairs can enrich the structural diversity and functional controllability of nucleic acids. In this work, we revealed a novel approach by placing a ligand-type nucleoside as an independent toehold to control DNA strand-displacement reactions based on metal–ligand complexation. This metal-mediated artificial base pair could initiate strand invasion similar to the natural toehold DNA, but exhibited flexible controllability to manipulate the dynamics of strand displacement that was only governed by its intrinsic coordination properties. External factors that influence the intrinsic properties of metal–ligand complexation, including metal species, metal concentrations and pH conditions, could be utilized to regulate the strand dynamics. Reversible control of DNA strand-displacement reactions was also achieved through combination of the metal-mediated artificial base pair with the conventional toehold-mediated strand exchange by cyclical treatments of the metal ion and the chelating reagent. Unlike previous studies of embedded metal-mediated base pairs within natural base pairs, this metal–ligand complexation is not integrated into the nucleic acid structure, but functions as an independent toehold to regulate strand displacement, which would open a new door for the development of versatile dynamic DNA nanotechnologies.

This metal-mediated artificial base pair can function as an independent toehold based on metal–ligand coordination and exhibit flexible and reversible controllability to manipulate the dynamics of strand displacement.  相似文献   

15.
Metal-mediated base pairing with artificial ligand-bearing nucleosides allows site-selective metal incorporation inside DNA duplexes. In particular, this strategy has provided a general way of discrete, heterogeneous metal arrays in a programmable manner. To increase the kind of metallo-building blocks, we have newly synthesized two artificial nucleosides which have an O, S-donor ligand as the nucleobase moiety, mercaptopyridone ( M) and hydroxypyridinethione ( S). These nucleosides were found to efficiently form metal-mediated base pairs with soft transition metal ions such as Pd (2+) and Pt (2+).  相似文献   

16.
A large amount of experimental evidence is available for the effects of magnesium ions on the structure and the stability of the DNA double helix. Less is known, however, on how these ions affect the dynamics of the molecule and the stability of each individual base pair. The present work addresses these questions by a study of the DNA duplex [dCGCAGATCTGCG]2, and its interactions with magnesium ions using nuclear magnetic resonance (NMR) spectroscopy and proton exchange. Two-dimensional NMR experiments indicate that binding of magnesium to this DNA duplex does not affect its structure. However, even in the absence of structural changes, magnesium ions specifically affect the exchange properties of imino protons in the four GC/CG base pairs that are located in the interior of the double helix. These specific changes do not result from alterations in the rates of spontaneous opening of these base pairs. Instead, the changes most likely reflect an enhancement in the energetic propensity for spontaneous opening of the GC/CG base pairs that is induced by the binding of magnesium ions.  相似文献   

17.
伍绍贵  冯丹 《物理化学学报》2016,32(5):1282-1288
DNA是大部分生物包括病毒的基因载体。DNA双螺旋链通过A=T和G≡C两种碱基对编码实现对遗传信息的存储。碱基对中的相互作用对DNA双螺旋链的稳定性起到重要作用,直接关系到基因的复制和转录。当前研究中,我们构建了四组不同结构的DNA双螺旋链,进行了总共4.3 μs的分子动力学模拟。通过伞形取样技术计算了DNA双螺旋链中碱基对分离的自由能曲线,并从分子尺度细节和相互作用能对自由能曲线进行解析。在碱基对G≡C的自由能曲线(PMF-PGC)上观察到三个峰,通过监测氢键数目的变化发现分别对应于G≡C三个氢键的断裂;而在A=T的自由能曲线(PMF-PAT)上只出现一个峰,说明A=T的两个氢键在分离过程中几乎同时断裂。PMF-PGC的总能垒比PMF-PAT高,主要是因为G≡C比A=T多一个氢键,更稳定。两条曲线的后段自由能仍然升高,而此时碱基对的氢键已断裂,这是DNA链骨架刚性所导致。我们还研究了碱基对稳定性受相邻碱基对的影响,发现邻近G≡C碱基对会增强A=T的稳定性, C≡G会削弱A=T的稳定性, T=A对A=T的影响较小。  相似文献   

18.
An artificial nucleoside surrogate with 1H‐imidazo[4,5‐f][1,10]phenanthroline ( P ) acting as an aglycone has been introduced into DNA oligonucleotide duplexes. This nucleoside surrogate can act as a bidentate ligand, and so is useful in the context of metal‐mediated base pairs. Several duplexes involving a hetero base pair with an imidazole nucleoside have been investigated. The stability of DNA duplexes incorporating the respective AgI‐mediated base pairs strongly depends on the sequence context. Quantum mechanical/molecular mechanical (QM/MM) calculations have been performed in order to gain insight into the factors determining this sequence dependence. The results indicated that, in addition to the stabilizing effect that results from the formation of coordinative bonds, destabilizing effects may occur when the artificial base pair does not fit optimally into the surrounding B‐DNA duplex.  相似文献   

19.
N. R. Jena 《Chemphyschem》2022,23(6):e202100908
In order to expand the existing genetic letters, it is necessary to design robust nucleotides that can function naturally in living cells. Therefore, it is desirable to examine the roles of recently-proposed second-generation artificially genetic letters in producing stable duplex DNA. Herein, a reliable dispersion-corrected density functional theory method is used to shed light on the electronic structures and properties of different rare tautomers of proposed expanded genetic letters and their effects on the base pair stabilities in the duplex DNA. It is found that the rare tautomers are not only stable in the aqueous medium but can also pair with natural bases to produce stable mispairs. Except for J and V, all of the artificial genetic letters are found to produce mispairs that are about 1–7 kcal mol−1 more stable than their complementary counterparts. They are also appreciably more stable than the naturally occurring G : C, A : T, and G : T pairs. Mainly attractive electrostatic interactions and polarity of the monomers are responsible for the higher base pair stabilities.  相似文献   

20.
BACKGROUND: The zinc finger (ZF) is the most abundant nucleic-acid-interacting protein motif. Although the interaction of ZFs with DNA is reasonably well understood, little is known about the RNA-binding mechanism. We investigated RNA binding to ZFs using the Zif268-DNA complex as a model system. Zif268 contains three DNA-binding ZFs; each independently binds a 3 base pair (bp) subsite within a 9 bp recognition sequence. RESULTS: We constructed a library of phage-displayed ZFs by randomizing the alpha helix of the Zif268 central finger. Successful selection of an RNA binder required a noncanonical base pair in the middle of the RNA triplet. Binding of the Zif268 variant to an RNA duplex containing a G.A mismatch (rG.A) is specific for RNA and is dependent on the conformation of the mismatched middle base pair. Modeling and NMR analyses revealed that the rG.A pair adopts a head-to-head configuration that counterbalances the effect of S-puckered riboses in the backbone. We propose that the structure of the rG.A duplex is similar to the DNA in the original Zif268-DNA complex. CONCLUSIONS: It is possible to change the specificity of a ZF from DNA to RNA. The ZF motif can use similar mechanisms in binding both types of nucleic acids. Our strategy allowed us to rationalize the interactions that are possible between a ZF and its RNA substrate. This same strategy can be used to assess the binding specificity of ZFs or other protein motifs for noncanconical RNA base pairs, and should permit the design of proteins that bind specific RNA structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号