首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Inelastic collisions of slow electrons with cobalt dichloride molecules, leading to the formation of excited cobalt atoms in odd sextet states, are experimentally studied. At an incident electron energy of 100 eV, thirty six dissociative excitation cross sections are measured for levels belonging to the z6D°, z6F°, and z6G° terms. In the electron energy range of 0–100 eV, ten optical excitation functions are recorded. The full cross sections for the dissociative excitation of the cobalt atom levels and the contribution of cascade transitions to their population are determined. The cross sections for electron–molecule and electron–atom collisions are compared.  相似文献   

2.
The vibronic transition strengths F VSO s for the transitions from the spin sublevels s of the triplet state T1 to the energy levels of the nontotally symmetric vibrations of dibenzothiophene (DB(S)) are calculated. For a series of heterocyclic analogues of fluorene (DB(S) and previously studied carbazole, dibenzofuran, and phenyldibenzophosphole), the regular features of the effect of the valence state of the heteroatom and of the spin-orbit interactions in individual atomic groups of the molecule are revealed. The factors affecting changes in the radiative deactivation rate constant of the T1 state of the molecules studied are established. The intensity distribution of the vibronic lines in the Herzberg-Teller component of the fine structure phosphorescence spectrum of phenyldibenzophosphole is calculated taking into account different populations of the triplet sublevels.  相似文献   

3.
This study continues the experimental testing of the validity of the inductive resonance theory of dipole-dipole energy transfer from the T 1S 0 transition dipole to stretching vibrations of intramolecular CH bonds of naphthalene and its hydroxy derivatives. To this end, in the series of compounds under study, the range of variation of the geometrical parameter [Φ(CH)]2 of the Förster theory, which accounts for the mutual orientation of the energy donor and acceptor, is estimated. Preliminarily, the angles between the transition dipole moments of the radiative and absorptive electronic transitions (T 1S 0 and S 0S 1; T 1S 0 and S 0S 2; S 1S 0 and S 0S 1; and S 1S 0 and S 0S 2) are measured at 77 K by the method of polarization photoselection. From the polarization measurements, the angles between the phosphorescence transition dipole moment and the plane of a molecule are determined. It was found that, upon passage from naphthalene to its β derivatives, the orientation of the dipole moment of the radiative T 1S 0 transition relative to the plane of a molecule markedly changes, with the in-plane component of the dipole moment being increased by an order of magnitude. The experimentally determined rate constants of nonradiative deactivation of the T 1 state averaged over the CH groups of the naphthalene ring system, k nr(CH), are compared with the rate constants [Φ(CH)]2 of the inductive resonance energy transfer from the dipole of the T 1S 0 transition to the dipole of the CH vibrations polarized in the plane of a molecule, calculated with regard to the orientational factor [Φ(CH)]2. This comparison showed that, in the series of compounds under study, a change in the orientation of the dipole moment of the radiative T 1S 0 transition relative to the plane of a molecule does not affect the rate of the nonradiative T 1?S 0 transition. This inference is confirmed by the absence of a correlation between the rate constants k dd(CH) calculated by us (with regard to [Φ(CH)]2) and the well-known rate constants k nr(CH) of individual sublevels of the T 1 state measured at T≤1.35 K for a number of organic molecules. The possible sources of discrepancy between the experimental data that k nr(CH) is independent of [Φ(CH)]2 and the predictions of the theory are considered. A conclusion is made that the electronic-vibrational energy transfer between electric dipoles is the most probable mechanism of the T 1?S 0 transitions, but the rate constant of the dipole-dipole energy transfer upon interaction of the electronic and vibrational dipoles in a molecule does not depend on their orientations.  相似文献   

4.
We show that the superconducting transition temperature T c (H) of a very thin highly disordered film with strong spin-orbital scattering can be increased by a parallel magnetic field H. This effect is due to the polarization of magnetic impurity spins, which reduces the full exchange scattering rate of electrons; the largest effect is predicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations, the phenomenon of superconductivity induced by magnetic field is predicted: the superconducting transition temperature T c (H) is found to be nonzero in the range of magnetic fields 0 < H* ≤ HH c .  相似文献   

5.
The transition dipole moments for the transition T1(ππ*) → S0 to vibrational energy levels of the nontotally symmetric vibrational modes of 2,3,7,8-tetrachloro-and 1,2,3,7,8-pentachlorodibenzo-p-dioxins are calculated. The interpretation of the fine-structure phosphorescence spectrum of the first of these compounds is refined, and the radiative deactivation rate constants for the s sublevels of the lowest triplet state T1 are estimated. For a number of polychlorinated compounds, the effect of chlorine atoms occupying the α and β positions in a molecule on the TsS0 transition dipole moments is discussed.  相似文献   

6.
Method and results of the beam polarization measurements are presented. The measurements were carried out at the proton polarized beam of Saturne-II accelerator as well as at the JINR (Dubna) synchrophasotron vector polarized deuteron beam. The analysis of the elastic (quasi-elastic) pp-scattering polarization is used as a method of the polarization measurements. The energy range of the measurement is 1.0≤T p ≤2.8 GeV for polarized proton and 1.66≤T d ≤7.3 GeV for polarized deuteron beams.  相似文献   

7.
The validity of an inductive resonance theory of energy transfer from the T 1S 0 transition dipole to overtone vibrations of molecular groups containing H and D atoms is experimentally tested for a series of compounds whose conjugation systems are similar in size. To this end, by using kinetic, spectral, and luminescent methods (measurements of the phosphorescence decay times, phosphorescence spectra, ratios between the quantum yields of phosphorescence and fluorescence at 77 K, total quantum yields of fluorescence at 293 K, and ratios between the quantum yields of fluorescence at 293 and 77 K), the deactivation processes of the lowest excited T 1 and S 1 states of seven emitting centers (naphthalene, its hydroxy and dihydroxy derivatives, and their monoanions) in solutions in ethanol-h 6, ethanol-d 6, and their 2: 1 mixtures with diethyl ether are studied. For all the compounds studied, the rate constants k r of the radiative T 1S 0 transition and the changes in the overlap integrals of the spectra of phosphorescence and absorption of overtones of CH stretching vibrations are determined. The rate constants of energy transfer k dd(CH) from the T 1S 0 transition dipole to the stretching vibrations of the CH bonds are calculated without regard for the changes in the localization and orientation of this transition dipole in the compounds under study. The contribution of an individual CH group k nr(CH) to the total rate constant of nonradiative deactivation of the T 1 state averaged over the CH groups of the naphthalene ring system is ascertained. A good correlation between the changes in the constants k nr(CH) and k dd(CH) in the series of the hydroxy derivatives of naphthalene is found, which is indicative of the inductive resonance mechanism of the energy degradation of the T 1 state. The deviations from proportionality between the changes in these constants upon passing from naphthalene to its hydroxy derivatives, which correlate with a marked increase in the radiative constant k nr of the hydroxy derivatives in comparison with naphthalene, indicate changes in the strength and localization of the T 1S 0 transition dipole moment and in its orientation with respect to the plane of the molecule that occur due to introduction of a heteroatom, oxygen, whose lone pair of electrons enters into conjugation with the πelectrons of the naphthalene ring system.  相似文献   

8.
The collisionless vibrational excitation of a polyatomic molecule in an IR laser radiation field has been theoretically studied. It has been shown that (i) the degree of vibrational excitation (namely, number 0000 of vibrational quanta of a molecular mode near-resonant with the IR laser field that are absorbed by the molecule) is low if laser pulse intensity P (energy flux density in the laser beam) is lower than a certain critical value P cr; (ii) the degree of excitation abruptly increases after crossing the boundary where P = P cr; (iii) this effect is attributed to two properties inherent in polyatomic molecules, namely, the anharmonicity of the vibrational mode interacting with the laser field and the energy exchange with other modes; and (iv) at P > P cr, number 00000 is determined only by energy density Φ = PτP, where τP is the laser pulse duration, 00000 monotonically increases with increasing Φ. The model is in good agreement with the experimental data.  相似文献   

9.
The influence of exchange and dipol interaction on the EPR-relaxation timesT 1 andT 2 of DPPH has been measured in theX-band between 295 and 2°K. The spinconcentration has been varied between 1.5·1021 spins/cm3 (single crystals) and 1.5·1018 spins/cm3 (solid solution in polystyrene). The EPR absorption was saturated stationarily. This gave the productT 1 T 2 from the saturation curve and the timeT 2 from saturation broadening of the absorption spectrum.  相似文献   

10.
In this paper the influence of lattice vibrations on the migration of electronic excitation energy along a one-dimensional system is treated with the aid of perturbation theory. The lattice is assumed to be in thermodynamic equilibrium, so that it is possible to average over all the lattice coordinates. With this assumption the caseT=0 is solvable exactly; the propagation of energy will be coherent. The caseT>0, however, has to be treated with an approximation that becomes invalid for very low temperatures. It results that atT>0 the exponentially decreasing coherent part of the propagation is accompanied by an incoherent part, which, after a certain critical timet kr, becomes the more important one;t kr is a function of the parameters that specify the system.  相似文献   

11.
The heat capacity of band magnets Fe2MeAl (Me = Ti, V, Cr, Mn, Fe, Co, Ni) ordered in crystal structure L21 has been measured in the range 2 K ≤ T ≤ 50 K. The dependences of the Debye temperature ΘD, the Sommerfeld coefficient γ, and the temperature-independent contribution to heat capacity C0 on the number of valence electrons z in the alloys have been determined.  相似文献   

12.
The strengths (P 00 s )2 and F VSO 2 of the transitions from the triplet sublevels s = z, y, and x of the electronic state 3A″ of the phenyldibenzophosphole (DB(P-Ph)) molecule are calculated taking into account the intramolecular spin-orbit (SO) and joint vibronic-spin-orbit (VSO) interactions. The contributions to the vibronic transition strengths from the SO interactions in different structural elements of the molecule (the C atoms of the dibenzene framework, the P atom, and the Ph substituent) are determined. The effect of the nonplanar nuclear configuration of the DB(P-Ph) molecule on the values of F VSO s is investigated. The radiative deactivation rate constants of the k rad s triplet sublevels T s are estimated. It is found that the vibrations of the A′(B1) symmetry in the fine-structure phosphorescence spectrum of DB(P-Ph) occur due to both the SO coupling exclusively in the P atom and the T x S0 transition (the x axis is perpendicular to the planar dibenzene framework of the molecule) with a high (preferential) population of this triplet sublevel.  相似文献   

13.
The rate constants K ST s of nonradiative S 1 ? T 1 s transitions to triplet sublevels s in molecules of chlorine derivatives of naphthalene (1,4-dichloro- and monosubstituted α-chloro- and β-chloronaphthalene) have been calculated within the model of vibronically induced spin-orbit (VISO) couplings. The contribution of the spin-orbit couplings in Cl atoms and carbon framework of the molecule to VISO couplings is determined. A dependence of the heavy-atom effect on the constant K ST s in relation to the type of sublevel T s and α and β positions of chlorine in the molecule is established and explained.  相似文献   

14.
The ignition kinetics of hydrogen-air mixtures with a small amount (0.5%) of ozone that are exposed to laser radiation with wavelength λ I = 248.4 nm is analyzed. The formation of excited O(1 D) atoms and O2(a 1Δ g ) molecules due to O3 molecule photodissociation is shown to greatly intensify the chain reactions and noticeably decrease the induction period and ignition temperature compared with the case when the radiation is absent even if the radiation energy applied to the gas is low, E s = 0.5?1.0 eV per O3 molecule. The efficiency of such a way of combustion initiation is much higher than at local heating of the medium by laser radiation but, at the same time, is considerably lower than the efficiency of the method based on excitation of O3 molecule asymmetric oscillations.  相似文献   

15.
A nonadiabatic theory of diamagnetic susceptibility of molecules is presented in which the electrons and nuclei are considered to be a united system of charged particles whose motion is simultaneously per-turbed by a magnetic field. It is found that on separating out the translational motion of the molecule as a whole, there is certain freedom in choosing the phase of the wave function. Its optimum choice corresponds to the gauge of the vector potential with which two contributions opposite in sign to the magnetic susceptibility—the first order diamagnetism and the second order paramagnetism—have minimum magnitudes. Expressions for non-adiabatic calculations of the diamagnetic susceptibility of atoms and molecules are derived. The diamagnetic contributions to the energy of the hydrogen, helium, and lithium atoms, the hydrogen molecule, the π?μ?π+μ+ and p ? K ? p + K + mesomolecules, and the positronium molecule e ? e ? e + e + are calculated. The nonadiabatic contribution of the nuclear motion to the diamagnetic susceptibility amounts to 0.01–0.1% for ordinary atoms and molecules, is increased by several hundred times on passing to mesomolecules, and reaches 50% for the positronium molecule.  相似文献   

16.
The temperature dependence of the molar heat capacity of HoMnO3 has been measured by differential scanning calorimetry. The experimental data have been used to calculate the thermodynamic properties of the oxide compound (changes in the enthalpy H°(T)–H°(364 K), entropy S°(T)–S°(364 K), and reduced Gibbs energy Φ°(T)). The data on the heat capacity of HoMnO3 have been generalized in the range of 40–1000 K.  相似文献   

17.
The spins of Ru5+ ions in Sr2YRuO6 form a face-centered cubic lattice with antiferromagnetic nearest neighbor interaction J≈25 meV. The antiferromagnetic structure of the first type experimentally observed below the Néel temperature T N =26 K corresponds to four frustrated spins of 12 nearest neighbors. In the Heisenberg model in the spin-wave approximation, the frustrations already cause instability of the antiferromagnetic state at T=0 K. This state is stabilized by weak anisotropy D or exchange interaction I with the next-nearest neighbors. Low D/JI/J~10?3 values correspond to the experimental T N and sublattice magnetic moment values.  相似文献   

18.
Excitation of the transitions from the even levels of a singly charged ytterbium ion that terminate on the low-lying odd levels 4f 13(2 F°)6s 2 2 F°, 4f 14(1 S)6p 2 P°, and 4f 13(2 F°7/2)5d6p(3 D)3[3/2]° is experimentally studied by measuring 51 excitation cross sections at an electron energy of 50 eV, and 16 optical excitation functions are determined within the electron energy range 0–200 eV. The largest magnitudes of the measured cross sections exceed 3 × 10?17 cm2.  相似文献   

19.
The decay properties of various even–even isotopes of barium in the range 112 ≤A ≤ 122 is studied by modifying the Coulomb and proximity potential model for both the ground and excited state decays, using recent mass tables. Most of the values predicted for ground state decays are within the experimental limit for measurements (T1/2 < 1030 s). The minimum T1/2 value refers to doubly magic or nearly doubly magic Sn (Z= 50) as the daughter nuclei. A comparison of log 10(T1/2) value reveals that the exotic cluster decay process slows down due to the presence of excess neutrons in the parent nuclei. The half-lives are also computed using the Universal formula for cluster decay (UNIV) of Poenaru et al and the Universal decay law (UDL) of Qi et al, and are compared with CPPM values and found to be in good agreement. A comparison of half-life for ground and excited systems reveals that probability of decay increases with a rise in temperature or otherwise, inclusion of excitation energy decreases the T1/2 values.  相似文献   

20.
In spin-conversion (SC) compounds containing molecules organized around an iron (II) ion the fundamental level of the ion is low spin (LS), S = 0, and its first excited one is high spin (HS), S = 2. This energy diagram is due to the ligands field interaction on 3d electrons and to the spin pairing energy. Heating the compound increases the magnetic susceptibility which corresponds to a change of populations of both levels and consequently a change of spin value of the molecules. This mechanism, called spin conversion (SC), can be accompagnied by thermal hysteresis observed by studying magnetic susceptibility or high spin fraction. In that case one considers that the (SC) takes place through a first-order phase transition due to intermolecular interactions. In the atom-phonon coupling model the molecules are considered as two-level systems, or two-level atoms, and it is assumed that the elastic force constant value of the spring which links two atoms first neighbours is depending on the electronic states of both atoms. In this study we calculate the partition function of a linear chain of N atoms (N ≤ 16) and we describe the role of phonons and that of the parameter Δ which corresponds to the distance in energy between both levels. The chain free-energy function is F atph . We introduce for the chain a free-energy function defined by the set (F HS , F LS , F barr ) and we show that F atph tends towards the previous set when N → ∞. The previous set allows to describe a first order phase transition between a (LS) phase and a (HS) one. At the crossing point between the function F LS and F HS , and around this point, there is an intermediate free-energy barrier which prevents the chain to change phase which can lead to thermal hysteresis. The energy gap between the free-energy function F atph and that defined by the set (F HS , F LS , F barr ) is small. So we can expect that a nanoparticule takes for free-energy function that defined by the set and then displays a thermal hysteresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号