首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.  相似文献   

2.
Syntheses, characterization and properties of expanded corrole-ferrocene conjugates are reported. Ferrocenyl group are covalently linked to the corrole macrocycle through three different spacers groups. The synthetic strategy involved prior insertion of ferrocene with spacers to the dipyrromethane unit followed by a "3+2" acid-catalyzed oxidative coupling methodology. The optical and emission data of the expanded corrole-ferrocene conjugates depend on the nature and length of the spacer groups and the maximum effects are seen where ferrocene is directly linked to the meso carbon of macrocycle. The single crystal X-ray structure of two expanded corrole-ferrocene conjugates; [22]pentaphyrin (1.1.0.1.0) with different meso substituents, clearly reveal shortening of the C-C bond length linking the meso carbon and the aryl substituent containing the ferrocene moiety relative to meso aryl substituents without ferrocene. The results suggest that an electronic interaction between the two pi systems. Electrochemical data reveal harder oxidation for the ferrocene unit in the conjugates relative to free ferrocene; this suggests the electron donating nature of the ferrocene. The first corrole ring oxidation shows easier oxidation relative to 1 and the magnitude of shifts in potential is inversely proportional to the length of spacer. The molecular first hyperpolarizabilities (beta) measured at 1064 nm by HRS method vary in the range 20-32x10(-30) esu and imply that the beta values can be increased by enhancing the number of mobile electrons in the conjugation. The conjugates form 1:1 metal complex with the Rh(I) where rhodium is coordinated to one amino and one imino nitrogen of the dipyrromethane unit.  相似文献   

3.
Ferrocenyl macrocyclic conjugates involving 22 pi oxasmaragdyrins and 18 pi oxacorroles have been synthesized and characterized. The direct covalent linkage of the ferrocenyl moiety to the meso position of the macrocycle is achieved by simple oxidative coupling of appropriate precursors with trifluoroacetic acid as catalyst. The electronic coupling between the ferrocenyl moiety and the macrocyclic pi system is apparent from: a) the red shifts (293-718 cm(-1)) of the Soret and Q-bands in the electronic absorption spectra of ferrocenyl conjugates; b) the shift of oxidation potentials (50-130 mV) of both the ferrocene and the corrole rings to the positive potentials; and c) considerable shortening of the C-C bond which connects the ferrocene and the meso-carbon atom of the macrocycle. The single-crystal X-ray structure of oxasmaragdyrin-ferrocene conjugate 9 reveals the planarity of the 22 pi skeleton with very small deviations of the meso-carbon atoms. The meso-ferrocenyl substituent has a small dihedral angle of 38 degrees, making way for mixing of the molecular orbitals of the ferrocene and the macrocycle. However, the other two meso substituents are almost perpendicular to the mean plane, defined by the three meso carbon atoms. Classical C-H...O and nonclassical C-H...pi interactions lead to a two-dimensional supramolecular network. Ferrocene-smaragdyrin conjugate 9 bonds to a chloride ion in the protonated form and a rhodium(i) ion in the free base form. Nonlinear optical measurements reveal a larger nonlinear refractive index (-5.83 x 10(-8)cm(2)W(-1)) and figure of merit (2.28 x 10(-8)cm(3)W(-1)) for the rhodium smaragdyrin-ferrocene conjugate 19 than for the others, suggesting its possible application in optical devices.  相似文献   

4.
Five Schiff bases, derived from substituted salicylaldehydes and methylamine, have been investigated by analysis of C-C and N-C coupling constants to check potential of those spectral parameters in intramolecular hydrogen bonds research. Two remaining imines, without OH substituent in position 2, were applied as model compounds for imine structure. The one-bond C-C couplings in aromatic ring provide valuable information about bond orders and correlate with bond lengths obtained by X-ray. The one-bond heteronuclear C-N couplings can be used very easily to distinguish between imine and enamine form of Schiff bases. Additionally the two-bond N-C couplings supply interesting information about geometry of the investigated molecules.  相似文献   

5.
A complete active space self-consistent field (CASSCF) calculation of the pi system of a conjugated molecule enables one to define optimal valence pi and pi* molecular orbitals (MOs). One may define from them a set of atom-centered orthogonal pi orbitals, one per carbon atom, and the resulting upper multiplet is used to define the pi-electron delocalization energy. This quantity is confirmed to be slightly distortive, i.e., to prefer bond-alternated geometries. One may also define strongly localized bond MOs corresponding to a Kekule structure and then perturb the associated strongly localized single determinant under the effect of the delocalization between the bonds and of the electronic correlation. The third order of perturbation introduces the contribution of the cyclic circulation of the electrons around the benzene ring, i.e. the aromatic energy contribution. Its value is about 1.5 eV. It is antidistortive, but remains important under bond alternation. The cyclic correlation effects are of minor importance.  相似文献   

6.
In a weakly acidic solution, the addition of HBr to 1-phenylprop-1-yne produces predominantly the anti-Markovnikov product. In this paper, we consider five possible explanations for this behavior and conclude that the concerted addition is occurring on the acetylenic pi bond orthogonal to the extended aromatic pi system. The electronic effect of the distal methyl group and the steric hindrance of the coplanar phenyl ring combine to promote bromide attack at the beta carbon. Attack on this pi bond is insensitive to the electronic effect of meta and para substituents on the ring but is very (sterically) sensitive toward all ortho substituents.  相似文献   

7.
The electron transfer to self-assembled molecular monolayers carrying a ferrocene (Fc) center, grafted on a flat Si(100) surface, is a recent subject of experimental investigation. We report here the density functional theory (DFT) ab initio calculation of Fc-silicon hybrid redox potentials. The systems were modeled with a slab of H-terminated Si(100) 1 x 1 and 2 x 1 surfaces: geometries were optimized using the ONIOM method, and solute-solvent interactions were included through the polarizable continuum model (PCM) method. Two new routes for Si functionalization with ethyl- (EtFC) and ethynyl-Fc (EFC) differing only in the unsaturation degree of the anchoring arm have been successfully explored, and the redox potential of the resulting hybrids has been measured by cyclic voltammetry: 0.675 and 0.851 V versus NHE for the EtFC and EFC derivatives, respectively. These values, along with the previously measured potential (0.700 V) for the mono-unsaturated derivative, vinyl-Fc, allow the relation between the unsaturation degree and the adduct redox potential to be studied. The comparison among the measured and computed potentials allows one to discriminate between different adduct isomers for the saturated species and more importantly provides strong indications that the carbon-carbon unsaturation initially present in the molecular arm used for anchoring to the surface is preserved upon addition, in contrast with the commonly accepted reaction mechanism.  相似文献   

8.
The large nonresonant Raman-scattering activities of the out-of-plane bending and torsional modes of monosubstituted benzene analogs are studied by low-frequency Raman experiments and B3LYP6-31++G(d,p) calculations. Electronic interactions between the sigma orbitals of the substituent and the pi orbitals of the ring are found to enhance the Raman activities, depending on the substituent and its conformation. In the case of tert-butylbenzene [C6H5C(CH3)3] and trimethylphenylsilane [C6H5Si(CH3)3], three single bonds which are linked to the alpha atom of the substituent have low rotational barriers around the joint bond. Nearly free rotation of the substituents leads to a significant probability for one of the single bonds to occupy a conformation close to the vertical configuration with respect to the ring at room temperature. The resultant sigma-pi electronic interaction gives rise to the large Raman activities. In contrast, those possessing a single bond in a coplanar (or nearly coplanar) configuration at the most stable equilibrium state, i.e., anisole (C6H5OCH3), thioanisole (C6H5SCH3), and N-methylaniline (C6H5NHCH3), display no prominent Raman bands for the low-frequency vibrational modes. In these molecules, the sigma-pi conjugation does not take place due to the orthogonal orientation of the orbitals. Strong conformational dependence of the sigma-pi Raman enhancement is clearly obtained for the metastable vertical conformer of thioanisole, for which Raman activities are one-order magnitude greater than those of the coplanar conformer.  相似文献   

9.
The C-N bond in aromatic N-heterocycles is a strong bond, its cleaving involving mostly examples of metal-element multiple bonds. We report on the C-C coupling of two molecules of an aromatic N-heterocycle mediated by scandium and yttrium benzyl complexes supported by a ferrocene 1,1'-diamide ligand. The reaction with 1-methylimidazole leads, ultimately, to the formation of a ring-opened imidazole coupled to a 1-methylimidazole fragment, a structure showing extended conjugation of double bonds. The experimental evidence agrees with involvement of only sigma bonds in these transformations.  相似文献   

10.
The molecular structures of ethynylbenzene and s-triethynylbenzene have been accurately determined by gas-phase electron diffraction and ab initio/DFT MO calculations and are compared to that of p-diethynylbenzene from a previous study [Domenicano, A.; Arcadi, A.; Ramondo, F.; Campanelli, A. R.; Portalone, G.; Schultz, G.; Hargittai, I. J. Phys. Chem. 1996, 100, 14625]. Although the equilibrium structures of the three molecules have C2v, D3h, and D2h symmetry, respectively, the corresponding average structures in the gaseous phase are best described by nonplanar models of Cs, C3v, and C2v symmetry, respectively. The lowering of symmetry is due to the large-amplitude motions of the substituents out of the plane of the benzene ring. The use of nonplanar models in the electron diffraction analysis yields ring angles consistent with those from MO calculations. The molecular structure of ethynylbenzene reported from microwave spectroscopy studies is shown to be inaccurate in the ipso region of the benzene ring. The variations of the ring C-C bonds and C-C-C angles in p-diethynylbenzene and s-triethynylbenzene are well interpreted as arising from the superposition of independent effects from each substituent. In particular, experiments and calculations consistently show that the mean length of the ring C-C bonds increases by about 0.002 A per ethynyl group. MO calculations at different levels of theory indicate that though the length of the C[triple bond]C bond of the ethynyl group is unaffected by the pattern of substitution, the C(ipso)-C(ethynyl) bonds in p-diethynylbenzene are 0.001-0.002 A shorter than the corresponding bonds in ethynylbenzene and s-triethynylbenzene. This small effect is attributed to conjugation of the two substituents through the benzene ring. Comparison of experimental and MO results shows that the differences between the lengths of the C(ipso)-C(ethynyl) and C(ipso)-C(ortho) bonds in the three molecules, 0.023-0.027 A, are correctly computed at the MP2 and B3LYP levels of theory but are overestimated by a factor of 2 when calculated at the HF level.  相似文献   

11.
采用密度泛函理论B3P86方法,在6-31G(d,p)基组水平上,对木质素结构中的6种连接方式(β-O-4、α-O-4、4-O-5、β-1、α-1、5-5)的63个木质素模化物的醚键(C-O)和C-C键的键离解能EB进行了理论计算研究。分析了不同取代基对键离解能的影响以及键长与键离解能的相关性。计算结果表明,C-O键的键离解能通常比C-C键的小,在各种醚键中Cα-O键的平均键离解能最小,为182.7 kJ/mol;其次是β-O-4连接中的Cβ-O键,苯环和烷烃基上的取代基对醚键的键离解能有较强的弱化作用,C-O键的键长和键离解能的相关性较差。与C-O键相比,C-C键的键离解能受苯环上取代基的影响很小,而烷烃基上的取代基对C-C键的键离解能有较大的影响,C-C键的键离解能和键长之间存在较强的线性关系,C-C键的键长越长,其键离解能越小。  相似文献   

12.
Density functional theory (UB3LYP/6-31G(d,p)) was used to determine substituent effects on the singlet-triplet-state energy gap for 21 meta-substituted phenylnitrenium ions. It was found that strongly electron-donating substituents stabilize the triplet state relative to the singlet state. With sufficiently strong meta electron donors (e.g., m,m'-diaminophenylnitrenium ion) the triplet is predicted to be the ground state. Analysis of equilibrium geometries, Kohn-Sham orbital distributions, and Mulliken spin densities for the triplet states of this series of nitrenium ions leads to the conclusion that there are two spatially distinct types of low-energy triplet states. Simple arylnitrenium ions such as phenylnitrenium ions as well as those having electron-withdrawing or weakly donating meta substituents have lowest-energy triplet states that are n,pi in nature. That is, one singly occupied molecular orbital is orthogonal to the plane of the phenyl ring and one is coplanar. These n,pi triplets are generally characterized by large ArNH bond angles (ca. 130-132 degrees ) and an NH bond that is perpendicular to the plane of the phenyl ring. In contrast, meta donor arylnitrenium ions have a lowest-energy triplet state best described as pi,pi. That is, both singly occupied molecular orbitals are orthogonal to the aromatic ring. Such pi,pi states are characterized by NH bonds that are coplanar with the phenyl ring and have ArNH bond angles that are more acute (ca. 110-111 degrees ). These triplet nitrenium ions have electronic structures analogous to those of meta-benzoquinodimethane derivatives.  相似文献   

13.
N(2)S(2) is a four-membered-ring system with 6pi electrons. While earlier proposals considered N(2)S(2) to be aromatic, recent electronic structure calculations claimed that N(2)S(2) is a singlet diradical. Our careful reexamination does not support this assertion. N(2)S(2) is closed shell and aromatic since it satisfies all three generally accepted criteria for aromaticity: energetic (stability), structural (planarity with equal bond lengths), and magnetic (negative nucleus-independent chemical shift due to the pi electrons). These characteristics as well as the electronic structure of N(2)S(2) are compared with those for an isoelectronic pi system, Li(2)C(4)H(4), motivated by theoretical and recent experimental investigations that confirmed its aromaticity. However, N(2)S(2) and Li(2)C(4)H(4) are both essentially 2pi-electron aromatic systems with a formal N-S (C-C) bond order of 1.25 even though they both have 6pi electrons. This is because four of the six pi electrons occupy the nonbonding pi HOMOs and only two electrons participate effectively in the aromatic stabilization. However, wave function analysis shows relatively large LUMO occupation numbers; this antibonding effect can be said to reduce the aromatic character by approximately 7% and 4% for N(2)S(2) and Li(2)C(4)H(4), respectively.  相似文献   

14.
Starting with the experimental results for the X-C bond lengths in this series of compounds, an attempt was made to explain the effect of the substituents R and Y on this bond length in the single molecules. Using the results of CNDO/2 calculations it can be shown why only the substituent Y has a dominant effect on the Si-C bond length in the silicon compounds, while the substituent R has a dominant effect on the C-C bond length in the carbon analogues.  相似文献   

15.
Density functional theory energies, geometries, and population analyses as well as nucleus-independent chemical shifts (NICS) have been used to investigate the structural and magnetic evidence for cyclic CnSn(2-) and CnSn (n = 3-6) electron delocalization. Localized molecular orbital contributions to NICS, computed by the individual gauge for localized orbitals method, dissect pi effects from the sigma single bonds and lone pair influences. CnSn(2-) (n = 3-5) structures in Dnh symmetry are minima. Their aromaticity decreases with increasing ring size. C3S3(2-) is both sigma and pi aromatic, while C4S4(2-) and C5S5(2-) are much less aromatic. NICS(0)pi, the C-C(pi) contribution to NICS(0) (i.e., at the ring center), decreases gradually with ring size. In contrast, cyclic C6S6(2-) prefers D2h symmetry due to the balance between aromaticity, strain energy, and the S-S bond energies and is as aromatic as benzene. The theoretical prediction that C6S6(6-) has D6h minima was confirmed by X-ray structure analysis. Comparisons between thiocarbons and oxocarbons based on dissected NICS analysis show that CnSn(2-) (n = 3-5) and C6S6(6-) are less aromatic in Dnh symmetry than their oxocarbon analogues.  相似文献   

16.
Triplet energy transfer (TET) from aromatic donors to 1,3,5,7-cyclooctatetraene (COT) is an extreme case of "nonvertical" behavior, where the transfer rate for low-energy donors is considerably faster than that predicted for a thermally activated (Arrhenius) process. To explain the anomalous TET of COT and other molecules, a new theoretical model based on transition state theory for nonadiabatic processes is proposed here, which makes use of the adiabatic potential energy surfaces (PES) of reactants and products, as computed from high-level quantum mechanical methods, and a nonadiabatic transfer rate constant. It is shown that the rate of transfer depends on a geometrical distortion parameter gamma=(2g(2)/kappa(1))(1/2) in which g stands for the norm of the energy gradient in the PES of the acceptor triplet state and kappa(1) is a combination of vibrational force constants of the ground-state acceptor in the gradient direction. The application of the model to existing experimental data for the triplet energy transfer reaction to COT from a series of pi,pi(*) triplet donors, provides a detailed interpretation of the parameters that determine the transfer rate constant. In addition, the model shows that the observed decrease of the acceptor electronic excitation energy is due to thermal activation of C=C bond stretchings and C-C bond torsions, which collectively change the ground-state COT bent conformation (D(2d)) toward a planar triplet state (D(8h)).  相似文献   

17.
The gas-phase electron transmission (ET) and dissociative electron attachment (DEA) spectra are reported for the series of (bromoalkyl)benzenes C6H5(CH2)nBr (n = 0-3), where the bromine atom is directly bonded to a benzene ring or separated from it by 1-3 CH2 groups, and the dihalo derivative 1-Br-4-Cl-benzene. The relative DEA cross sections (essentially due to the Br- fragment) are reported, and the absolute cross sections are also evaluated. HF/6-31G and B3LYP/6-31G* calculations are employed to evaluate the virtual orbital energies (VOEs) for the optimized geometries of the neutral state molecules. The pi* VOEs, scaled with empirical equations, satisfactorily reproduce the corresponding experimental vertical electron attachment energies (VAEs). According to the calculated localization properties, the LUMO (as well as the singly occupied MO of the lowest lying anion state) of C6H5(CH2)3Br is largely localized on both the benzene ring and the C-Br bond, despite only a small pi*/sigma*C-Br interaction and in contrast to the chlorine analogue where the LUMO is predicted to possess essentially ring pi character. This would imply a less important role of intramolecular electron transfer in the bromo derivative for production of the halogen negative fragment through dissociation of the first resonant state. The VAEs calculated as the anion/neutral energy difference with the 6-31+G* basis set which includes diffuse functions are relatively close to the experimental values but do not parallel their sequence. In addition the SOMO of some compounds is not described as a valence MO with large pi* character but as a diffuse sigma* MO.  相似文献   

18.
A series of 5-fluoro-1-(2'-oxocycloalkyl)uracils (3-11) that are potentially novel radiation-activated prodrugs for the radiotherapy of hypoxic tumor cells have been synthesized to evaluate a relationship between the molecular structure and the reactivity of one-electron reductive release of antitumor 5-fluorouracil (1) in anoxic aqueous solution. All the compounds 3-11 bearing the 2'-oxo group were one-electron reduced by hydrated electrons (eaq-) and thereby underwent C(1')-N(1) bond dissociation to release 5-fluorouracil 1 in 47-96% yields upon radiolysis of anoxic aqueous solution, while control compounds (12, 13) without the 2'-oxo substituent had no reactivity toward such a reductive C(1')-N(1) bond dissociation. The decomposition of 2-oxo compounds in the radiolytic one-electron reduction was more enhanced, as the one-electron reduction potential measured by cyclic voltammetry in N,N-dimethylformamide became more positive. The efficiency of 5-fluorouracil release was strongly dependent on the structural flexibility of 2-oxo compounds. X-ray crystallographic studies of representative compounds revealed that the C(1')-N(1) bond possesses normal geometry and bond length in the ground state. MO calculations by the AM1 method demonstrated that the LUMO is primarily localized at the pi* orbital of C(5)-C(6) double bond of the 5-fluorouracil moiety, and that the LUMO + 1 is delocalized between the pi* orbital of 2'-oxo substituent and the sigma* orbital of adjacent C(1')-N(1) bond. The one-electron reductive release of 5-fluorouracil 1 in anoxic aqueous solution was presumed to occur from the LUMO + 1 of radical anion intermediates possessing a partial mixing of the antibonding C(2')=O pi* and C(1')-N(1) sigma* MO's, that may be facilitated by a dynamic conformational change to achieve higher degree of (pi* + sigma*) MO mixing.  相似文献   

19.
The surface chemistry of three representative aromatic molecules containing two different heteroatoms isoxazole, oxazole, and thiazole on Si(111)-7 x 7 was studied. These molecules exhibit different competition and selectivity for multiple reaction channels with this surface, determined by a combination of molecular electronic and structural factors. Isoxazole is chemically attached to Si(111)-7 x 7 through both dative-bond addition and [4 + 2]-like cycloaddition. Oxazole chemisorbs on Si(111)-7 x 7 through both dative-bond addition and [2 + 2]-like cycloaddition. The kinetically favored [2 + 2]-like cycloadduct at low temperature is thermally converted into the thermodynamically preferred [4 + 2]-like cycloadduct at a temperature higher than 300 K. Thiazole is chemically bound to this surface only through formation of a Si...N dative bond at low temperature. This dative-bonded molecule is thermally converted into a [4 + 2]-like cycloadduct. The reaction channels of the three five-membered aromatic molecules containing two different heteroatoms (isoxazole, oxazole, and thiazole) and of the aromatic molecules containing only one heteroatom (pyridine, pyrrole, furan, and thiophene) are compared and analyzed for a thorough understanding of the reaction mechanisms of various heterocyclic aromatic molecules on this surface. The intrinsic connection between surface reaction mechanism and molecular electronic structure is demonstrated. This includes the distribution of electron density on the molecular ring determined by the geometric arrangement of the heteroatoms, the electronegativity of the heteroatoms, and the electronic contribution of the heteroatoms to formation of aromatic pi conjugation, as well as the molecular polarity.  相似文献   

20.
Steric and electronic structure of 2-methoxy- and 2-ethoxyphenyltrichlorostannanes, as well as of 2-methoxyphenyltrichlorostannanes substituted in the ring, was studied using the RHF and B3LYP levels with the 3?C21G* basis set. The results of calculations were compared with experimental 35Cl NQR data. In all studied molecules the Sn atom is pentacoordinated. The structure of the coordination polyhedron is a highly distorted trigonal bipyramid. Replacing methyl group in the alkoxy substituent involved in the Sn??O coordinating interaction by a more electron-donor ethyl group increases the strength of the Sn??O coordination bond. The same occurs also at the introduction of an electron-releasing substituent in the aromatic ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号