首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two new nickel(II) complexes, {[Ni(L)(4,4′-bpdc)] · 3H2O} n (1) and {[Ni(L)(2,6-ndc)] · 2CH3CN} n (2) (L = 1,8-dihydroxylethyl-1,3,6,8,10,13-hexaazacyclotetradecane, 4,4′-bpdc = 4,4′-biphenyldicarboxylate, 2,6-ndc = 2,6-naphthalenedicarboxylate), have been synthesized and structurally characterized by spectroscopic and X-ray diffraction methods. Compound 1 shows a 3-D supramolecule which is composed of two different series of 1-D coordination polymers, where each 1-D chain runs in different directions and interacts by π–π stacking at the intersection. Compound 2 contains 1-D coordination polymers in which 1-D chains run in the same direction. The 1-D chains are interconnected by hydrogen bonds in an undulated fashion to form a 3-D supramolecule.  相似文献   

2.
Two coordination polymers, namely Zn(HL)(4,4′‐bpy)1.5 ( 1 ), [Zn3(L)2(BIMB)2] · 5H2O ( 2 ) [H3L = 5‐(4‐carboxybenzyloxy)isophthalic acid, 4,4′‐bpy = 4,4′‐bipyridine, BIMB = 1,4‐bis(1H‐imidazol‐1‐yl)benzene] were synthesized under hydrothermal conditions. Their structures are determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, and thermogravimetric (TG) analyses. Complex 1 features a 2D 4‐connected network. Complex 2 is a 3D twofold interpenetrating (3,4,6)‐connected net. In addition, the luminescent properties for 1 and 2 were studied in the solid state at room temperature.  相似文献   

3.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

4.
The coordination polymers, {[Cu(Hbidc)(2, 2′‐bpy)(H2O)] · 2H2O}n ( 1 ) and {[Mn(Hbidc)(2, 2′‐bpy) (H2O)2] · 2H2O}n ( 2 ) (H3bidc = benzimidazole‐5, 6‐dicarboxylic acid, 2, 2′‐bpy = 2, 2′‐bipyridine), were synthesized in solution and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), and single‐crystal X‐ray diffraction. Complexes 1 and 2 consist of different 1D chain structures. In both compounds, 2, 2′‐bpy is chelating in a bidentate manner, whereas the Hbidc ligands in complexes 1 and 2 display chelating‐bridging tridentate and bridging bidentate coordination modes. The two complexes are further extended into 3D supramolecular structures through O–H ··· O and N–H ··· O hydrogen bonds. The thermal stabilities of complexes 1 and 2 were studied by thermogravimetric analyses (TGA).  相似文献   

5.
The self‐assembly of 4′‐hydroxy‐biphenyl‐4‐carboxylic acid (H2hbc), 4, 4′‐bipyridine (4, 4′‐bpy) with a cobalt salt under hydrothermal conditions yielded a novel dinuclear cobalt(II) coordination polymer, {[Co(Hhbc)2(4, 4′‐bpy)] · H2O}n ( 1 ), where the coordinating polymeric chains are connected together through hydrogen bonding into a 3D framework of the primitive cubic ( pcu ) topology. Two pcu frameworks are interweaved into a 3D twofold Class Ia interpenetrating array.  相似文献   

6.
The complexes [Co(L1)(mpy)] ( 1 ), [Ni(L1)(mpy)] ( 2 ), [Co(L1)(tbpy)] · 2H2O ( 3 ), [Ni2(L1)2(tbpy)2] · 5H2O ( 4 ), [Mn2(L1)2(tbpy)2] · 3H2O ( 5 ), [Mn(L1)(biim‐3)] ( 6 ), [Ni2(L1)2(btb)2(H2O)] · 2H2O ( 7 ), [Cu(L2)(mpy)] · 7H2O ( 8 ), [Co(L2)(tbpy)(H2O)] ( 9 ), [Ni(L2)(tbpy)(H2O)] · H2O ( 10 ), [Cu(L2)(bib)] · 2H2O ( 11 ), and [Cu(L2)(btb)] · 2H2O ( 12 ) [H2L1 = (3‐carboxyl‐phenyl)‐(4‐(2′‐carboxyl‐phenyl)‐benzyl)ether, H2L2 = 3‐carboxy‐1‐(4′‐carboxybenzyl)‐2‐oxidopyridinium, mpy = 2‐(4‐(4′‐methylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), tbpy = 2‐(4‐(4′‐tert‐butylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), biim‐3 = 1,3‐bis(imidazol‐1′‐yl)propane, btb = 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene, bib = 1,4‐bis(imidazol‐1′‐ylmethyl)benzene] were synthesized. Compounds 1 – 6 have similar 1D chain structures, which are further linked by π–π interactions to generate supramolecular double chains for 1 and 2 , and supramolecular layers for 3 – 6 . Compound 7 displays a 3D 6‐connected framework with (44 · 611) topology. Compound 8 features a monomolecular structure, which is further linked by hydrogen bonds between the lattice water molecules and carboxylate oxygen atoms of L2 anions to form a 2D supramolecular layer. The monomolecular structures of 9 and 10 are connected by hydrogen bonds and π–π interactions simultaneously to generate supramolecular layers. Compounds 11 and 12 show layer structures.  相似文献   

7.
Two coordination polymers, namely, {[Zn(bpea) (bmp)] · H2O}n ( 1 ) and {[Ni(bpea)(bimb)] · DMF}n ( 2 ) [H2bpea = biphenylethene‐4,4′‐dicarboxylate, bmp = 1,4‐bis(2‐methylimidazol‐3‐ium‐1‐yl)biphenyl and bimb = 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene], were synthesized under solvothermal conditions with mixed organic ligands. Single crystal X‐ray diffraction reveals that complex 1 features a three‐dimensional (3D) structure with a sixfold interpenetrating dia net. Complex 2 shows a 3D fivefold interpenetrating dia topology. Furthermore, the solid state luminescent properties of complexes 1 and 2 were investigated at room temperature.  相似文献   

8.
Three ZnII and CdII complexes with Y‐shaped dicarboxylate ligands, namely [Zn(L1)(2,2′‐bpy)2(H2O)] · 2H2O ( 1 ), [Zn(L1)(bpp)(H2O)] ( 2 ), and [Cd(L1)(H2O)] · H2O ( 3 ) [H2L1 = N‐phenyliminodiacetic acid, 2,2′‐bpy = 2,2′‐bipyridine, bpp = 1,3‐bis(4‐pyridyl)propane] were synthesized and characterized by elemental analysis, IR spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 shows an hydrogen‐bonded 2D network, whereas compound 2 is an infinite 1D wavy chain structure, though O–H ··· O hydrogen‐bonded to form a 2D network. Compound 3 displays a 2D uninodal 3‐connected Shubnikov plane net with the point symbol of (4.82). Moreover, the solid‐state such as thermal stabilities and fluorescence properties of 1 – 3 were also investigated.  相似文献   

9.
A novel three‐dimensional (3D) ZnII coordination polymer, namely, poly[[[1,4‐bis(pyridin‐4‐yl)benzene](μ3‐3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoato)zinc(II)] 1,4‐bis(pyridin‐4‐yl)benzene], {[Zn(C22H16O6)(C16H12N2)]·C16H12N2}n or {[Zn(PMBD)(DPB)]·DPB}n, 1 , where H2PMBD is 3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoic acid and DPB is 1,4‐bis(pyridin‐4‐yl)benzene, has been synthesized by self‐assembly using zinc nitrate, a semi‐rigid dicarboxylic acid and a nitrogen‐containing ligand. The single‐crystal X‐ray structure determination indicates that 1 possesses an intriguing 3D architecture with a 4‐connected uninodal cds topology, which is constructed from dinuclear {Zn2} clusters and V‐shaped PMBD2? linkers. Compound 1 exhibits excellent photocatalytic activity on the degradation of the organic dyes Rhodamine B (RhB), Rhodamine 6G (Rh6G) and Methyl Red (MR).  相似文献   

10.
A mixed‐valence Mn complex {[MnIIMnIII(HL)2(4,4′‐bpy)(H2O)2] · (ClO4)(DMF)3(4,4′‐bpy)0.5}n ( 1 ) [H2L = 3‐(2‐phenol)‐5‐(pyridin‐2‐yl)‐1,2,4‐triazole] was synthesized and characterized by X‐ray single‐crystal structure analysis and magnetic susceptibility. Single‐crystal X‐ray analysis revealed that complex 1 has a dinuclear core, in which adjacent central MnIII atoms are linked by 4,4′‐bipyridine to form an infinite one‐dimensional (1D) molecular configuration. According to the Mn surrounding bond lengths and bond valence sum (BVS) calculations, we demonstrated that the Mn atom coordinated to the pyridine N atoms is in the +2 oxidation state, while another Mn atom coordinated to the phenolic oxygen atoms is in the +3 oxidation state. Magnetic susceptibility data of the complex 1 indicate that the ferromagnetic interaction dominates in this complex.  相似文献   

11.
The reactions of Ln(NO3)3 · 6H2O and 4‐acetamidobenzoic acid (Haba) with 4,4′‐bipyridine (4,4′‐bpy) in ethanol solution resulted in three new lanthanide coordination polymers, namely {[Ln(aba)3(H2O)2] · 0.5(4,4′‐bpy) · 2H2O} [Ln = Sm ( 1 ), Gd ( 2 ), and Er ( 3 ), aba = 4‐acetamidobenzoate]. Compounds 1 – 3 are isomorphous and have one‐dimensional chains bridged by four aba anions. 4,4′‐Bipyridine molecules don’t take part in the coordination with LnIII ions and occur in the lattice as guest molecules. Moreover, the adjacent 1D chains in the complex are further linked through numerous N–H ··· O and O–H ··· O hydrogen bonds to form a 3D supramolecular network. In addition, complex 1 in the solid state shows characteristic emission in the visible region at room temperature.  相似文献   

12.
The coordination compounds [Cd(TBDS)(H2O)2]n ( 1 ) and Cd(TBDS)(bpy)2(H2O) · 3H2O ( 2 ) {H2TBDS = 4‐([4,2′:6′,4′′‐terpyridine]‐4′‐yl)benzene‐1,3‐disulfonic acid, bpy = 2,2′‐bipyridine} were synthesized under hydrothermal conditions. Single crystal X‐ray diffraction analyses revealed that compound 1 is a twofold interpenetrating 3D framework with 4‐connected dia topology, whereas compound 2 is a mononuclear compound, which packed with each other via hydrogen‐bonding interactions to construct a three‐dimensional supramolecular structure, and contained unusual meso‐helical chains. Additionally, the luminescence properties and thermal stabilities of 1 and 2 were investigated.  相似文献   

13.
Two new ZnII complexes, {[Zn(L)(phen)(H2O)]?·?H2O} (1) and {[Zn(L)(4bpy)(H2O)]?·?H2O} (2) (L?=?5,6-dihydro-1,4-dithiin-2,3-dicarboxylate, phen?=?1,10-phenanthroline, and 4bpy?=?4,4′-bipyridine), have been prepared by in situ reaction of Zn(ClO4)2?·?6H2O with 5,6-dihydro-1,4-dithiin-2,3-dicarboxylic anhydrate in the presence of lithium hydroxide, together with incorporating chelating phen or bridging 4bpy as co-ligands. Their structures were determined by single-crystal X-ray diffraction. Complex 1 takes a 1-D helical structure that is further assembled into a 2-D network by O–H?···?O, C–H?···?O hydrogen bonds, and weak S?···?S interactions, and then an overall 3-D supramolecular framework was formed by π?···?π stacking interactions. Complex 2 possesses a 2-D (4,4)-layered structure. The structural difference between 1 and 2 can be attributed to the different N-donor auxiliary co-ligands. Both 1 and 2 are photoluminescent materials whose emission properties are closely related to their intrinsic structure.  相似文献   

14.
Two cobalt(II) coordination polymers, {[Co(μ‐4,4′‐bipy)(4,4′‐bipy)2(H2O)2]·(OH)3·(Me4N)·4,4′‐bipy·4H2O}n ( 1 ) and {[Co(μ‐4,4′‐bipy)(H2O)4]·suc·4H2O}n ( 2 ) (4,4′‐bipy = 4,4′‐bipyridine, suc = succinate dianions), were hydrothermally synthesized and structurally characterized by X‐ray diffraction analysis, UV‐Vis‐NIR, and ICP. The main structure feature common to the both polymers is presence of the infinite linear chains, [Co(μ‐4,4′‐bipy)(4,4′‐bipy)2(H2O)2]n ( 1 ) and [Co(μ‐4,4′‐bipy)(H2O)4]n ( 2 ), respectively. In 1 , the chains are further linked by the hydrogen‐bond and π‐π stacking interaction, producing extended layer structure. The 4,4′‐bipy molecules in 1 play three different roles. In 2 , the chains are linked into three‐dimensional network structure via complicated hydrogen bonding system. The variable temperature (2.0~300 K) magnetic susceptibility of 1 indicates a tendency of spin‐transition in the temperature range of 110 K to 22 K, which attributes to the transition of high‐spin to low‐spin from Co2+(d7) ion. Also, the result of surface photovoltage spectroscopy (SPS) reveals that the polymer 1 has significant photoelectric conversion property in the region of 300‐800 nm.  相似文献   

15.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

16.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

17.
A novel twofold interpenetrating two‐dimensional (2D) ZnII coordination framework, poly[[(μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene‐κ2N3:N3)(μ‐naphthalene‐2,6‐dicarboxylato‐κ2O2:O6)zinc(II)] dimethylformamide monosolvate], {[Zn(C12H6O4)(C14H14N4)]·C3H7NO}n or {[Zn(1,3‐BMIB)(NDC)]·DMF}n (I), where H2NDC is naphthalene‐2,6‐dicarboxylic acid, 1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and DMF is dimethylformamide, was prepared and characterized through IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that (I) exhibits an unusual twofold interpenetrating 2D network. In addition, it displays strong fluorescence emissions and a high photocatalytic activity for the degradation of Rhodamine B (RhB) under UV‐light irradiation.  相似文献   

18.
To explore the coordination possibilities of anthracene‐based ligands, three cadmium(ιι) complexes with anthracene‐9‐carboxylate ( L ) and relevant auxiliary chelating or bridging ligands were synthesized and characterized: Cd2( L )4(2bpy)2(μ‐H2O) ( 1 ), Cd2( L )4(phen)2(μ‐H2O) ( 2 ), and {[Cd3( L )6(4bpy)]} ( 3 ) (2bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, and 4bpy = 4,4′‐bipyridine). Structural analyses show that complexes 1 and 2 both take dinuclear structures by incorporating the chelating 2bpy or phen ligand, which are further interlinked by intermolecular hydrogen‐bonding, π ··· π stacking, and/or C–H ··· π supramolecular interactions to generate higher‐dimensional supramolecular frameworks. Complex 3 has a one‐dimensional (1D) ribbon‐like structure, which is further assembled into a two‐dimensional (2D) layer, and a three‐dimensional (3D) framework by the co‐effects of interchain C–H ··· O hydrogen‐bonding and C–H ··· π supramolecular interactions. Moreover, the luminescent properties of these complexes were further investigated in detail.  相似文献   

19.
First examples of transition metal complexes with HpicOH [Cu(picOH)2(H2O)2] ( 1 ), [Cu(picO)(2,2′‐bpy)]·2H2O ( 2 ), [Cu(picO)(4,4′‐bpy)0.5(H2O)]n ( 3 ), and [Cu(picO)(bpe)0.5(H2O)]n ( 4 ) (HpicOH = 6‐hydroxy‐picolinic acid; 2,2′‐bpy = 2,2′‐bipyridine; 4,4′‐bpy = 4,4′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane) have been synthesized and characterized by single‐crystal X‐ray diffraction. The results show that HpicOH ligand can be in the enol or ketonic form, and adopts different coordination modes under different pH value of the reaction mixture. In complex 1 , HpicOH ligand is in the enol form and adopts a bidentate mode. While in complexes 2 – 4 , as the pH rises, HpicOH ligand becomes in the ketonic form and adopts a tridentate mode. The coordination modes in complexes 1 – 4 have not been reported before. Because of the introduction of the terminal ligands 2,2′‐bpy, complex 2 is of binuclear species; whereas in complexes 3 and 4 , picO ligands together with bridging ligands 4,4′‐bpy and bpe connect CuII ions to form 2D nets with (123)2(12)3 topology.  相似文献   

20.
Lu  Jiu-Fu  Yu  Xiao-Hu  Zhou  Ke  Kumar Roy  Soumendra  Yue  Si-Yu  Li  Li  Zhao  Cai-Bin  Jin  Ling-Xia 《Transition Metal Chemistry》2019,44(7):641-647

Two metal coordination polymers, namely {[Co(1,3-BIP)(OBA)]·0.5H2O}n (SNUT-1) and [Co2(µ-η11-O2)(1,3-BIP)2(PMA)]n (SNUT-2), where 1,3-BIP?=?1,3-bis(imidazol)propane, H2OBA?=?4,4′-oxybis(benzoate) and H4PMA?=?benzene-1,2,4,5-tetracarboxylic acid, were prepared by hydrothermal methods. Single-crystal X-ray analysis revealed that the structure of SNUT-1 consists of a 3D?→?3D twofold interpenetrating network that can be described as a 4-connected uninodal net with (65·8) topology. The structure of SNUT-2 consists of a 3D framework which can be described as a (4,5)-connected binodal net with (42·63·84·10) (33·42·5) topology. The gas adsorption properties of SNUT-1 and photocatalytic activity of SNUT-2 for the degradation of Rhodamine B have been explored.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号