首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ZnO thin films were grown by pulsed laser deposition on titanium substrates at different substrate temperatures ranging from 300 to 700 °C. X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS),photoluminescence, and Raman spectroscopy are employed to investigate the change of properties. XRD, XPS, and Raman data showed that the films consisted of TiO2 at high substrate temperature, which will deteriorate the crystallization quality of ZnO films. The optimum temperature for the growth of ZnO films on the Ti substrate is about 500 °C in this paper. The ZnO films grown on titanium substrate can be used in direct current, microwave, and medical applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Novel ZnO/N‐doped helical carbon nanotubes (ZnO/N‐HCNTs) composites were successfully synthesized via a facile chemical precipitation approach at room temperature. The sample was well characterized by X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity was evaluated in the degradation of methylene blue (MB) aqueous solution under UV light irradiation. It is found that ZnO nanoparticles were highly and uniformly anchored on the surface and inner tubes of the N‐HCNTs with size of about 5 nm, and significantly enhanced the photocatalytic activity compared to pure ZnO. The enhanced photocatalytic activity of ZnO/N‐HCNTs composites can be ascribed to the integrative synergistic effect of effective interfacial hybridization between N‐HCNTs and ZnO nanoparticles and the prolonged lifetime of photogenerated electron–hole pairs. Moreover, the ZnO/N‐HCNTs could be easily recycled without any obvious decrease in photocatalytic activity and could be promote their application in the area of environmental remediation.  相似文献   

3.
V5Al8 films (thickness about 100 nm) were deposited on sapphire substrates by RF‐sputtering and nitridated with NH3 at 600‐1250 °C (1 min) in a RTP system. The as deposited and nitridated films were investigated by ESCA (electron spectroscopy for chemical analysis), XRD (X‐ray diffraction), XRR (X‐ray reflectometry), AFM (atomic force microscopy) and SEM (scanning electron microscopy). Formation of an aluminum nitride layer at the surface and precipitation of V(Al) in the bulk was found. In the temperature regime from 600 °C to 900 °C a considerable amount of oxygen is incorporated in the aluminum nitride layer. The roughness of the surface increased with increasing temperature and at 1250 °C a partially detaching of the AlN layer could be observed.  相似文献   

4.
The proposed research, presents the synthesis, characterization, and photocatalytic accomplishment of ZnO nanoplate (ZnOs) modified with activated carbon derived from Konar bark. The obtained nanocomposite (photocatalyst) was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). First, the ZnO photocatalyst and activated carbon (AC) were prepared separately; then, the ZnO photocatalyst was modified with activated carbon. Various parameters namely pH, degradation time, and photocatalyst dose were optimized and studied in multivariate method by design expert7 software. The synergic efficiency of ZnO‐AC (adsorbent/photocatalyst) exhibited a good rate of ciprofloxacin (CIP) removal under visible irradiation. In addition, first pseudo order kinetic and isotherms equations were calculated. Moreover, the identification of degradation products was performed by ultra performance liquid chromatography‐tandem mass spectrometer (UPLC‐MS/MS). It is for the first time that a ZnO photocatalyst modified with activated carbon (ZnO‐AC) applied for CIP degradation.  相似文献   

5.
The O‐terminated ZnO(000‐1) surface and Mn/ZnO(000‐1) interface have been investigated by synchrotron radiation photoemission spectroscopy (SRPES), low energy electron diffraction (LEED) and X‐ray photoelectron spectroscopy (XPS) systematically. Our results show that ordered O‐polar ZnO(000‐1) surface can be prepared by annealing in an oxygen ambience and this polar surface expresses good chemical stability. At room temperature, metallic Mn film is deposited onto the cleaned ZnO(000‐1)surface and grows in a layer‐by‐layer mode. During the process of Mn film deposition a downward Fermi level movement is observed, and the final resultant Schottky barrier height is 1.07 ± 0.05 eV. High temperature annealing is performed and the interfacial reaction happens evidently. The interfacial chemical reaction and the effect of interfacial dipole layer have been briefly discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Composite microspheres composed of monodispersed poly(St-co-MAA) latices with diameter about 260 nm as core and Ag nanocrystals as shell were prepared by an in situ reduction method. The shell thickness could be controlled in the range of 15--45 nm by this coating process. The structure and the composition of the core-shell microspheres were characterized by transmission electron microscopy (TEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TG). The formation of the composite microspheres is explained by the nucleation of silver on the surface of the latices followed by growth of the silver shell.  相似文献   

7.
Copper films were coated on beech wood substrates by electroless plating method. The influence of bath temperature on the copper films properties was studied by varying the bath temperatures 25, 35, 45 and 55 °C. Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X‐ray diffraction (XRD) pattern, X‐ray photoelectron spectroscopy (XPS), micro Raman spectroscopy and contact angle measurements were used to both characterize the physical and chemical copper films properties and understand the influence of bath temperature on the wettability of copper surface. In our studies, we have found that the gained copper mass significantly increased at 55 °C. The crystalline nature of the coated copper was confirmed by XRD. The presence of Cu2O and CuO was observed by XPS and micro Raman techniques, which confirms the oxidization of the coated copper surface. Also these characterization techniques have shown the big influence of bath temperature on the morphology, grain size, chemical composition and the film thickness of the coated copper. The wettability was highly influenced by increasing CuO on the coated copper, which is increased by the bath temperature. The contact angle measurements have demonstrated the influence of C―O, O―C?O and CuO components of the surface on the wettability of the samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Design and development of new photoluminescence system are much in demand for various engineering and technological applications. The present investigation focused on the influence of graphene quantum dots (GQDs) dispersion in the polyvinyl butyral (PVB) matrix. The structural and chemical interaction of GQD‐dispersed PVB composites was confirmed by X‐ray diffraction (XRD), Fourier transform infrared (FTIR), micro‐Raman spectroscopy, ultraviolet and visible (UV‐Vis), and photoluminescence (PL) techniques. Chemical interaction between the functional groups leads to PL quenching at 455 nm. Changes on crystallite size and interplanar spacing hinders on the structural properties of the nanocomposite. Raman spectroscopy reveals the decrease in D/G intensity ratio influenced by GQD loading wt% in the polymer system. The dispersion and occupied network of GQD in the PVB matrix was confirmed by optical polarizing microscopy (OPM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Effect of electrical conductivity of composites as a function of temperature has been verified. Decrease in direct bandgap as a function of GQD loading confirms the promising PL properties of the prepared composite system. Thus GQD‐derived composites may further be developed as a membrane for improved PL property.  相似文献   

9.
Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs.  相似文献   

10.
The sol–gel method of synthesis of the hybrid nanocomposite films of ZnO/(2‐hydroxypropyl) cellulose (HPC) on silica glass is presented. The sol phases were prepared for different weight ratios of zinc acetate dihydrate to HPC in the presence of triethylamine (TEA). Raman spectrum of the mixture of ZnAc and HPC indicates coordinating interaction between zinc ion and HPC. The generation of ZnO nanoparticles in the HPC matrix proceeds in situ through the annealing of the gel phase at a temperature of 160°C. Identification of ZnO nanoparticles in the HPC matrix is done by using photoluminescence (PL), UV–Vis, and Raman spectroscopy. The films of ZnO/HPC nanocomposite are transparent in the visible light and show a higher energy value of absorption edge compared with ZnO in the bulk. Nanocrystalline films of ZnO were obtained by the calcination of ZnO/HPC nanocomposite at 500°C. ZnO films possess a good transparency for the visible light and high absorbance for UV light. Nanocrystallite sizes of ZnO particles were estimated from the X‐ ray lines broadening. The properties of ZnO layers were studied by the evaluation of PL, X‐ray investigation and atom force microscope (AFM) scanning, and the optical absorption edge. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Thin film of ferromagnetic (FM) metal (Ni) on a semiconducting substrate (GaAs), i.e. Ni/GaAs(001), has been synthesized using electrochemical method. The structural, chemical and magnetic properties at the surface and interface have been investigated using X‐ray diffraction (XRD)/grazing incidence X‐ray reflectivity (GIXRR), X‐ray photoelectron spectroscopy (XPS) and magneto‐optical Kerr effect (MOKE) techniques, respectively. A crystalline peak observed at 44.4º in the XRD pattern, corresponding to Ni(111) Bragg peak, confirms the monocrystalline nature of the film. The atomic force microscopy image shows small‐sized spherical crystallites uniformly deposited over the substrate. The fitted GIXRR pattern confirms a smooth Ni/GaAs(001) film surface with roughness of less than ~5 ± 0.4 Å. The micro‐structural parameters, such as film thickness, surface and interface roughness, and electron density, are found to be ~230 ± 5 Å, ~4.5 ± 1 Å, ~0.5 ± 0.02 Å and ~6.38 ± 0.5 (Å?2), respectively. The chemical nature of the film at the surface and interface, investigated using a depth profile XPS technique, shows no diffusion of metallic Ga and As into Ni layer or vice versa, confirming a sharp FM/semiconducting Ni/GaAs(001) interface. The magnetization behavior investigated using MOKE technique at room temperature shows a soft FM nature of the film with coercivity of ~75 Oe at the film surface. However, coercivity was found to be ~35 Oe at the interface. In addition, the saturation magnetization is also found to decrease at the interface with decreasing Ni layer thickness. The observed magnetization behavior is correlated with structural and chemical changes that occur at the interface of Ni/GaAs(001) film. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
采用喷雾辅助气相沉积法在水热法合成的ZnO纳米线上沉积CdS纳米颗粒。采用X射线衍射仪(XRD)、激光拉曼仪(Raman)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱分析谱(XPS)和紫外可见漫反射光谱等测试手段对复合光催化剂进行表征。结果表明,3~10 nm的CdS纳米粒子修饰在直径约为100 nm ZnO纳米线的表面。XPS和Raman表明复合材料中ZnO和CdS之间存在化学相互作用。可见光催化降解罗丹明B实验结果表明ZnO/CdS复合材料的催化性能优于单相CdS或ZnO,沉积时间为30 s合成的ZnO/CdS速率常数分别是CdS和ZnO的2.91和4.03倍,且具有较高的稳定性。ZnO/CdS复合材料光催化性能增强的可能原因为光吸收范围的拓展和光生载流子分离效率的提高。  相似文献   

13.
Connected zinc oxide (ZnO) nanoparticles are successfully synthesized by a simple solution‐based chemical route that uses evaporation and concentration technology. The influences of processing parameters, especially the evaporation and concentration time on the size and morphology of the nanoparticles, have been investigated by transmission electron microscopy (TEM) and high‐resolution TEM (HRTEM). The structure and optical properties are systematically characterized by X‐ray diffraction (XRD), UV/Vis spectrophotometery, and fluorescence spectroscopy (FL). It is found that the average diameter and morphology are strongly affected by the evaporation and concentration time. Additionally, the formation mechanism of the nanoparticles is also discussed. The studies revealed that the evaporation and concentration are important aggregation or nucleation processes for ZnO growth, which leads to the macro‐differences in morphology. These results provide some insight into the growth mechanism of ZnO nanostructures. The synthetic strategy developed in this study may also be extended to the preparation of other nanomaterials and promising applications in various fields of nanotechnology.  相似文献   

14.
Low-temperature growth of ZnO nanorods by chemical bath deposition   总被引:1,自引:0,他引:1  
Aligned ZnO nanorod arrays were synthesized using a chemical bath deposition method at normal atmospheric pressure without any metal catalyst. A simple two-step process was developed for growing ZnO nanorods on a PET substrate at 90-95 degrees C. The ZnO seed precursor was prepared by a sol-gel reaction. ZnO nanorod arrays were fabricated on ZnO-seed-coated substrate. The ZnO seeds were indispensable for the aligned growth of ZnO nanorods. The ZnO nanorods had a length of 400-500 nm and a diameter of 25-50 nm. HR-TEM and XRD analysis confirmed that the ZnO nanorod is a single crystal with a wurtzite structure and its growth direction is [0001] (the c-axis). Photoluminescence measurements of ZnO nanorods revealed an intense ultraviolet peak at 378.3 nm (3.27 eV) at room temperature.  相似文献   

15.
一种在固体基底上制备高度取向氧化锌纳米棒的新方法   总被引:8,自引:1,他引:8  
郭敏  刁鹏  蔡生民 《化学学报》2003,61(8):1165-1168
采用廉价、低温的方法,在修饰过ZnO纳米粒子膜的ITO基底上成功制备出具有 高长径比、高度取向的ZnO纳米棒阵列,用扫描电子显微镜(SEM),X射线衍射(XRD) ,高分辨透射电子显微镜(HRTEM)以及拉曼光谱对制备出的ZnO纳米棒的结构和形貌 进行了表征,测试结果表明,ZnO纳米棒是单晶,属于六方晶系,与基底直,上仍 沿(001)晶面择优生长的特征,并且ZnO纳米棒基本上无氧空位的存在,统计结果显 示,水热反应2h后90%以上的ZnO纳米棒直径为120~190nm,长度为4μm  相似文献   

16.
Ultrathin carbon films were grown on different types of metallic substrates. Free‐standing foils of Cu and Ni were prepared by electroforming, and a pure Ni film was obtained by galvanic displacement on a Si wafer. Commercial foil of Ni 99.95% was used as a reference substrate. Carbon films were grown on these substrates by chemical vapour deposition in a CH4‐H2 atmosphere. Obtained films were characterized by Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and ultraviolet photoemission spectroscopy. The XPS at grazing collection angle was used to determine the thickness of carbon films. Depending on the deposition parameters, the films of graphene or graphite were obtained on the different substrates. The uniformity of graphene and its distribution over the sample area were investigated from Raman data, optical images, and XPS chemical maps. The presence of graphene or graphite in the films was determined from the Raman spectra and Auger peak of C KVV. For this purpose, the D parameter, which is a fingerprint of carbon allotropes, was determined from C KVV spectra acquired by using X‐rays and electron beam. A formation of an intermediate layer of metal hydroxide was revealed in the samples with graphene overlayer.  相似文献   

17.
Semiconducting GaN and GaxIn1?xN nanoparticles (4–10 nm in diameter, depending on the metal ratio) with tunable indium content are prepared through a chemical synthesis (the urea‐glass route). The bandgap of the ternary system depends on its composition, and therefore, the color of the final material can be turned from bright yellow (the color of pure GaN) to blue (the color of pure InN). Transmission electron microscopy (TEM and HRTEM) and scanning electron microscopy (SEM) images confirm the nanoparticle character and homogeneity of the as‐prepared samples. X‐ray diffraction (XRD), electron diffraction (EDX), elemental mapping, and UV/Vis, IR, and Raman spectroscopy investigations are used to confirm the incorporation of indium into the crystal structure of GaN. These nanoparticles, possessing adjusted optical properties, are expected to have potential applications in the fabrication of novel optoelectronic devices.  相似文献   

18.
Ultra‐thin HfO2 films of 3.5, 5.0, and 8.0 nm nominal thicknesses were prepared, respectively, on silicon substrates by using atomic layer deposition method. Through the analyses of X‐ray reflectometry (XRR), X‐ray photoelectron spectroscopy, and transmission electron microscopy for HfO2 films with and without sample cleaning, the effects of surface contamination on XRR curve and film thickness were investigated, and contamination layer was observed and the thickness of the layer was determined. X‐ray photoelectron spectroscopy results indicated that the amount of surface contamination varied considerably because of the surface cleaning. XRR curve shapes and the positions of thickness fringes changed and the thickness from Fourier analyses of the curves were different for the same sample due to the different surface contamination. Contamination layer of about 1 nm thickness was observed by Fourier analysis of XRR curve. Simulation for XRR curve showed the best fit to data when contamination layer of about 1 nm thickness was considered, and the result was consistent with that of the Fourier analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
MENG  Xiuxia  YANG  Naitao  TAN  Xiaoyao 《中国化学》2009,27(10):1925-1928
Polyelectrolyte nanotubes of poly(sodium 4‐styrene‐sulfonate) (PSS) with cationic poly(diallyl dimethyl ammonium chloride) (PDDA) (PSS/PDDA) were fabricated by a pressure‐filter‐template technique using microporous anodic aluminum oxide (AAO) as the template. UV‐Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and infrared spectroscopy (FT‐IR) were applied to characterize the obtained PSS/PDDA nanotubes. The results have shown that the PSS/PDDA nanotubes exhibit an amorphous structure and have the outer diameter of 200 nm and length of 25 µm respectively, which are in good agreement with the dimensions of the AAO template pores. The wall thickness of the nanotubes may be controlled by the number of the self‐assembled layers. Formation of the nanotubes follows a layer‐by‐layer (LbL) mechanism due to the electrostatic interactions, where the SO?3 groups of PSS are first adsorbed on the Lewis acid sites of AAO template pores.  相似文献   

20.
We present an approach to fabricate ZnO nanowires/polymer composite into three‐dimensional microstructures, based on two‐photon polymerization direct laser writing, a fabrication method that allows submicrometric spatial resolution. The structural integrity of the structures was inferred by scanning electron microscopy, while the presence and distribution of ZnO nanowires was investigated by energy dispersive X‐ray, Raman spectroscopy, and X‐ray diffraction. The optical properties of the produced composite microstructures were verified by imaging the characteristic ZnO emission using a fluorescence microscope. Hence, such approach can be used to develop composite microstructures containing ZnO nanowires aiming at technological applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 333–337  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号