首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
The asymmetric hydrogenation of complex heterocyclic ketones 1 in the presence of the novel catalyst RuCl2[(S)-Xyl-P-Phos][(S)-DAIPEN] and a base afforded the corresponding alcohols 2 in good enantiomeric purity. The outcome of the reaction depended on the substitution pattern of the ketone and the stoichiometry of the base. After optimization of the reaction conditions, the pure alcohols 2a and 2b were isolated in good yield (>70%) and enantiomeric purity (>93% ee) and used as key intermediates for the synthesis of the pharmaceutically active 3,6,7,8-tetrahydrochromeno[7,8-d]imidazoles 3a and 3b.  相似文献   

2.
Treatment of β-monosubstituted vinylic sulfoxides 1 with trifluoroacetic anhydride in dichloromethane gave excellent yields of 1,2-bis(trifluoroacetoxy)thioethers 6. Mildly basic methanolysis of 2-alkyl-substituted 6 gave α-hydroxyaldehydes 11 as monomer-dimer mixtures; similar treatment of the 2-aryl analogues afforded aryl (hydroxymethyl) ketones 12. Compounds 11 underwent Wittig reactions with methoxycarbonylmethylenetriphenylphosphorane to give high yields of γ-hydroxy-α,β-unsaturated esters 13, predominantly as the E-isomers. β-Monosubstituted vinylic sulfoxides 1 possessing a β-aryl group, and β-disubstituted vinylic sulfoxides 3 reacted with trifluoromethanesulfonic anhydride-sodium acetate in acetic anhydride to give 2-(phenylsulfenyl)acylals 14. These gave 2-phenylsulfenyl aldehydes 15 upon basic methanolysis, and the corresponding primary alcohols 16 on reduction with sodium borohydride. Reaction of both geometric isomers of enantiomerically pure vinylic sulfoxide 1o with TFAA gave racemic 6o as a mixture of diastereomers. Reaction of optically pure (E)- and (Z)-1p with trifluoromethanesulfonic anhydride-sodium acetate in acetic anhydride gave acylal 19 in 10.5 and 23% e.e., respectively.  相似文献   

3.
C. Jallabert  H. Riviere 《Tetrahedron》1980,36(9):1191-1194
The dehydrogenation of alcohols to the corresponding carbonyl compounds by CuCl/O2/ligand (L) shows relative rates of dehydrogenation according to the type of alcohol used; primary or secondary benzyl alcohols > allylic alcohols or aliphatic alcohols > cyclic alcohols. The rate of this reaction was found to be dependent upon the nature of the ligands used; e.g. phenanthroline 110 > bipyridyl 2,2' > TMEDA, etc. When L = phenanthroline 110 the catalytic effect, of the system ROH/CuCl/L (3:1:1), was found to be similar to the system ROH/CuCl/L (1:2:2). The pure oxygen was replaced by air without any noticeable change in the rate of the reaction. The primary aliphatic alcohols lead to the aldehydes containing 1, 2, etc. carbon atoms fewer than the starting alcohols.  相似文献   

4.
The 16 electron ruthenium complexes [(η6-1-isopropyl-4-methyl-benzene)(X-N)Ru(II)], where X-N is 2-amido-1-ethoxide (2), 1-N-p-tosyl-1,2-diamido-ethane (3), 1-N-p-tosyl-1,2-diamido-benzene (7), 1-N-(p-tosyl)-1,2-diamido-1,1,2,2-tetramethyl-ethane (8) and 1-N-(p-tosyl)-1,2-diamido-meso-1,2-diphenyl-ethane (9) have been evaluated as catalysts for the transfer dehydrogenation of secondary alcohols to ketones in acetone and/or cyclohexanone solvent. Complexes 2 and 3 cannot be isolated and decompose under these conditions. In contrast complexes 7, 8 and 9 are supported by ligands designed to resist β-hydride elimination and can with the exclusion of oxygen be held in solution for weeks. Complex 7 is not active as a catalyst. Complexes 8 and 9 are highly air-sensitive and active as catalysts for transfer (de)hydrogenations under oxidizing and reducing conditions, respectively. There is no coordinative inhibition of the catalysts by the ketone solvent under oxidizing conditions, but both catalysts show a correlation between the reaction rates and the ΔG values of the reactions with reactions leading to α, β-unsaturated ketones proceeding faster. For all alcohol/ketone substrate pairs where the ketone is not α, β-unsaturated, the hydrogenation reactions under reducing conditions (iso-propanol solvent) are at least one order of magnitude faster than the corresponding dehydrogenation reaction under oxidizing conditions (acetone solvent).  相似文献   

5.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

6.
The imidazolium salts 1,1′-dibenzyl-3,3′-propylenediimidazolium dichloride and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazolium dichloride have been synthesized and transformed into the corresponding bis(NHC) ligands 1,1′-dibenzyl-3,3′-propylenediimidazol-2-ylidene (L1) and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazol-2-ylidene (L2) that have been employed to stabilize the PdII complexes PdCl22-C,C-L1) (2a) and PdCl22-C,C-L2) (2b). Both latter complexes together with their known homologous counterparts PdCl22-C,C-L3) (1a) (L3 = 1,1′-dibenzyl-3,3′-ethylenediimidazol-2-ylidene) and PdCl22-C,C-L4) (1b) (L4 = 1,1′-bis(1-naphthalenemethyl)-3,3′-ethylenediimidazol-2-ylidene) have been straightforwardly converted into the corresponding palladium acetate compounds Pd(κ1-O-OAc)22-C,C-L3) (3a) (OAc = acetate), Pd(κ1-O-OAc)22-C,C-L4) (3b), Pd(κ1-O-OAc)22-C,C-L1) (4a), and Pd(κ1-O-OAc)22-C,C-L2) (4b). In addition, the phosphanyl-NHC-modified palladium acetate complex Pd(κ1-O-OAc)22-P,C-L5) (6) (L5 = 1-((2-diphenylphosphanyl)methylphenyl)-3-methyl-imidazol-2-ylidene) has been synthesized from corresponding palladium iodide complex PdI22-P,C-L5) (5). The reaction of the former complex with p-toluenesulfonic acid (p-TsOH) gave the corresponding bis-tosylate complex Pd(OTs)22-P,C-L5) (7). All new complexes have been characterized by multinuclear NMR spectroscopy and elemental analyses. In addition the solid-state structures of 1b·DMF, 2b·2DMF, 3a, 3b·DMF, 4a, 4b, and 6·CHCl3·2H2O have been determined by single crystal X-ray structure analyses. The palladium acetate complexes 3a/b, 4a/b, and 6 have been employed to catalyze the oxidative homocoupling reaction of terminal alkynes in acetonitrile chemoselectively yielding the corresponding 1,4-di-substituted 1,3-diyne in the presence of p-benzoquinone (BQ). The highest catalytic activity in the presence of BQ has been obtained with 6, while within the series of palladium-bis(NHC) complexes, 4b, featured with a n-propylene-bridge and the bulky N-1-naphthalenemethyl substituents, revealed as the most active compound. Hence, this latter precursor has been employed for analogous coupling reaction carried out in the presence of air pressure instead of BQ, yielding lower substrate conversion when compared to reaction performed in the presence of BQ. The important role of the ancillary ligand acetate in the course of the catalytic coupling reaction has been proved by variable-temperature NMR studies carried out with 6 and 7′ under catalytic reaction conditions.  相似文献   

7.
The interaction of rhenium hydrides ReHX(CO)(NO)(PR3)2 1 (X=H, R=Me (a), Et (b), iPr (c); X=Cl, R=Me (d)) with a series of proton donors (indole, phenols, fluorinated alcohols, trifluoroacetic acid) was studied by variable temperature IR spectroscopy. The conditions governing the hydrogen bonding ReHHX in solution and in the solid state (IR, X-ray) were elucidated. Spectroscopic and thermodynamic characteristics (−ΔH=2.3–6.1 kcal mol−1) of these hydrogen bonded complexes were obtained. IR spectral evidence that hydrogen bonding with hydride atom precedes proton transfer and the dihydrogen complex formation was found. Hydrogen bonded complex of ReH2(CO)(NO)(PMe3)2 with indole (2a–indole) and organyloxy-complex ReH(OC6H4NO2)(CO)(NO)(PMe3)2 (5a) were characterized by single-crystal X-ray diffraction. A short NHHRe (1.79(5) Å) distance was found in the 2a–indole complex, where the indole molecule lies in the plane of the Re(NO)(CO) fragment (with dihedral angle between the planes 0.01°).  相似文献   

8.
The O,O-diethyl thiophosphonate functional group has been introduced on position 2 of a pyrrole heterocycle following a two steps sequence that makes use of a [1,2] base-induced rearrangement applied for the first time to a O,O-diethyl thiophosphoramide intermediate. This rearrangement has been studied by low temperature NMR and the intermediates have been fully characterized. The coordination of this monoanionic bidentate (N,Ssp2) ligand to silver or palladium is studied The bidentate ligand 2 (O,O-diethyl pyrrol-2-ylthiophosphonate), associated with a palladium precursor, produces in the presence of triethylamine the complex trans-[Pd(η2-2′)2] 3 (2′ is deprotonated ligand 2). Ligand 2 also reacts with silver oxide in dichloromethane to give an unstable complex 2′-Ag that can be stabilized by addition of triphenylphosphine to produce the coordination complex 4 [Ag((η2-2′)(PPh3)2].  相似文献   

9.
The C/Si/Ge-analogous compounds rac-Ph(c-C5H9)El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, rac-3a; El=Si, rac-3b; El=Ge, rac-3c) and (c-C5H9)2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 5a; El=Si, 5b; El=Ge, 5c) were prepared in multi-step syntheses. The (R)- and (S)-enantiomers of 3ac were obtained by resolution of the respective racemates using the antipodes of O,O′-dibenzoyltartaric acid (resolution of rac-3a), O,O′-di-p-toluoyltartaric acid (resolution of rac-3b), or 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate (resolution of rac-3c). The enantiomeric purities of (R)-3ac and (S)-3ac were ≥98% ee (determined by 1H-NMR spectroscopy using a chiral solvating agent). Reaction of rac-3ac, (R)-3ac, (S)-3ac, and 5ac with methyl iodide gave the corresponding methylammonium iodides rac-4ac, (R)-4ac, (S)-4ac, and 6ac (3ac4ac; 5ac6ac). The absolute configuration of (S)-3a was determined by a single-crystal X-ray diffraction analysis of its (R,R)-O,O′-dibenzoyltartrate. The absolute configurations of the silicon analog (R)-4b and germanium analog (R)-4c were also determined by single-crystal X-ray diffraction. The chiroptical properties of the (R)- and (S)-enantiomers of 3ac, 3ac·HCl, and 4ac were studied by ORD measurements. In addition, the C/Si/Ge analogs (R)-3ac, (S)-3ac, (R)-4ac, (S)-4ac, 5ac, and 6ac were studied for their affinities at recombinant human muscarinic M1, M2, M3, M4, and M5 receptors stably expressed in CHO-K1 cells (radioligand binding experiments with [3H]N-methylscopolamine as the radioligand). For reasons of comparison, the known C/Si/Ge analogs Ph2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 7a; El=Si, 7b; El=Ge, 7c) and the corresponding methylammonium iodides 8ac were included in these studies. According to these experiments, all the C/Si/Ge analogs behaved as simple competitive antagonists at M1–M5 receptors. The receptor subtype affinities of the individual carbon, silicon, and germanium analogs 3a–8a, 3b–8b, and 3c–8c were similar, indicating a strongly pronounced C/Si/Ge bioisosterism. The (R)-enantiomers (eutomers) of 3ac and 4ac exhibited higher affinities (up to 22.4 fold) for M1–M5 receptors than their corresponding (S)-antipodes (distomers), the stereoselectivity ratios being higher at M1, M3, M4, and M5 than at M2 receptors, and higher for the methylammonium compounds (4ac) than for the amines (3ac). With a few exceptions, compounds 5ac, 6ac, 7ac, and 8ac displayed lower affinities for M1–M5 receptors than the related (R)-enantiomers of 3ac and 4ac. The stereoselective interaction of the enantiomers of 3ac and 4ac with M1–M5 receptors is best explained in terms of opposite binding of the phenyl and cyclopentyl ring of the (R)- and (S)-enantiomers. The highest receptor subtype selectivity was observed for the germanium compound (R)-4c at M1/M2 receptors (12.9-fold).  相似文献   

10.
The novel triethylantimony(v) o-amidophenolato (AP-R)SbEt3 (R = i-Pr, 1; R = Me, 2) and catecholato (3,6-DBCat)SbEt3 (3) complexes have been synthesized and characterized by IR, NMR spectroscopy (AP-R is 4,6-di-tert-butyl-N-(2,6-dialkylphenyl)-o-amidophenolate, alkyl = isopropyl (1) or methyl (2); 3,6-DBCat is 3,6-di-tert-butyl-catecholate). Complexes 13 have been obtained by the oxidative addition of corresponding o-iminobenzoquinones or o-benzoquinones to Et3Sb. The addition of 4,6-di-tert-butyl-N-(3,5-di-tert-butyl-2-hydroxyphenyl)-o-iminobenzoquinone to Et3Sb at low temperature gives hexacoordinate [(AP-AP)H]SbEt3 (4) which decomposes slowly in vacuum with the liberation of ethane yielding pentacoordinate complex [(AP-AP)]SbEt2 (5). [(AP-AP)H]2− is O,N,O′-tridentate amino-bis-(3,5-di-tert-butyl-phenolate-2-yl) dianion and [(AP-AP)]3− is amido-bis-(3,5-di-tert-butyl-phenolate-2-yl) trianion. The decomposition of 45 accelerates in the presence of air. o-Amidophenolates 1 and 2 bind molecular oxygen to give spiroendoperoxides Et3Sb[L-iPr]O2 (6) or Et3Sb[L-Me]O2 (7) containing trioxastibolane rings. This reaction proceeds slowly and reaches the equilibrium at 15–20% conversion five times more than for (AP-R)SbPh3 analogues. Molecular structures of 1 and 5 were determined by X-ray analysis.  相似文献   

11.
The amidinoethylation of alcohols takes place by the addition of sodium alkoxides 2 (R1 = Me, Et) to the CC double bond of a variety of N,N'-substituted-propenamidines 1 (Method A). This illustrates the activation of the CC double bond by the conjugated amidine function and provides a new class of Michael acceptors for alcohols. However, this activation is poorer than with other nucleophiles or Michael acceptors. The amidinoethylation makes available 3-alkoxy-N,N'-substituted-amidines not easily accessible by other classical methods. However, it is demonstrated that the general N,N'-substituted-amidine synthesis via the nitrilium salts can also apply to nitrile compounds having an alkoxygroup present on the molecule (method B). Since the cyanoethylation of alcohols (4) is a very fast and facile reaction the method B is the preferred strategy for the synthesis of 3-alkoxy-N,N'-substituted-propanamidines 3.  相似文献   

12.
A practical procedure suitable for large scale lithiation of N-tosylindoles and subsequent addition to ketones is described. Bis(N,N-dimethylaminoethyl) ether was found to stabilize 2-lithio-N-tosylindole 1A at −25 °C [The temperatures cited are internal temperatures unless otherwise stated]. Addition of this reagent allows the lithiation of N-tosyl indoles and subsequent addition to ketones to operate at −25 °C, a temperature suitable for large scale reactions.  相似文献   

13.
The microbiological reduction of (±)-l-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-propan-2-one (4) and (±)-1-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-butan-2-one (5) by Rhodotorula mucilaginosa was investigated. Both enantiomers of 4 are reduced stereospecifically to corresponding alcohols; (+)-(2S, l'R)-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-propan-2-ol (6) and (-)-(2S,l'S)-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-propan-2-ol (7). p ]The substrate selectivity in the reduction of 5 was observed: R enantiomer of 5 yields stereospecifically (+)-(2S,1'R)-(2',2',3'-trimethylcyclopent-3'-en-l'-yl)-butan-2-ol (8) while S(-)5 remains unchanged.  相似文献   

14.
The sponges Stelleta clarella Tethya aurantia, Lissodendoryx noxiosa, Haliclona permollis and Haliclona sp. were examined for steroids. All sponges contained C27-C29, Δ5, mono and diunsaturated sterols. In addition, the sponge Tethya aurantia contained Z - 24 - propylidene - cholest - 5- en -3β-ol (19) and the 5α,8α-peroxides of cholesta - 5,7 - dien - 3β - ol, ergosterol, ergosta - 5,7,24(28) - trien - 3β - ol and 24ξ - ethyl - cholesta - 5,7 - dien - 3β - ol (29, 30, 31 and 32). The sponge Stelleta clarella also contained 24 - nor - cholesta - 4,22 - dien - 3 - one (21), cholesta - 4,22 - dien - 3 - one (22), 24ξ - methyl - cholesta - 4,22 - dien - 3 - one (24), ergosta - 4,24(28) - dien - 3 - one (25), (E) - stigmasta - 4,24(28) - dien - 3 - one (28), 5α - cholestanol (5), 5α - ergostanol (7) and 5α - poriferastanol (9) The possible biosynthetic significance of these hitherto undescribed peroxides and enones from marine sources is discussed. A synthesis of 19 is also described.  相似文献   

15.
(R)-(-)-Ipsdienol 1″ and its antipode 1' were synthesized from (R)-(+)-glyceraldehyde acetonide and (R)-(+)-malic acid, respectively. This established the S-configuration of the naturally occurring (+)-ipsdienol. A new synthesis of (R)-(+)-ipsenol 2″ and its antipode 2' was also described. Chiral epoxides were shown to be useful intermediates for the synthesis of these chiral alcohols.  相似文献   

16.
Eight S-glycosylated 5,10,15,20-tetrakis(tetrafluorophenyl)porphyrins (1a′, 1b′, 1a and 1b (a: S-glucosylated, b: S-galactosylated)) and their 1,3-dipolar cycloadducts, i.e. chlorins 2a′, 2b′, 2a and 2b were prepared by nucleophilic substitution of the pentafluorophenyl groups with S-glycoside. These photosensitizers were characterized by 1H, 13C and 19F NMR spectroscopies and elemental analysis. The photocytotoxicity of the S-glycosylated photosensitizers and the parent porphyrin (1) and chlorin (2) was examined in HeLa cells. Photosensitizers 1, 2, 1a′, 1b′, 2a′ and 2b′ showed no significant photocytotoxicity at the concentration of 0.5 μM, while the deprotected photosensitizers 1a, 1b, 2a and 2b were photocytotoxic. The strong inhibition by sodium azide of the photocytotoxicity of these photosensitizers suggested that 1O2 is the main mediator. The S-glucosylated photosensitizers 1a and 2a showed higher photocytotoxicity than S-galactosylated 1b and 2b, respectively. The cellular uptake of 1a and 2a increased up to 24 h, while that of 1b and 2b was saturated by 12 h.  相似文献   

17.
The mechanism of electrochemical oxidation of catechol (1a), 3-methylcatechol (1b) and 3-methoxycatechol (1c) in the presence of benzenesulfinic acid (3) as a nucleophile has been studied in an aqueous solution using cyclic voltammetry and controlled-potential coulometry. The results indicate that the catechol derivatives (1a1c) are converted to sulfone derivatives (4a4c) through Michael addition of benzenesulfinate to anodically generated o-quinones (2a2c). The electrochemical synthesis of 4a4c has been successfully performed in an undivided cell in good yields and purity.  相似文献   

18.
The use of salicylaldehyde oxime (H2salox) in manganese(III) carboxylate chemistry has yielded new members of the family of hexanuclear compounds presenting the [Mn63-O)22-OR)2]12+ core, complexes [MnIII63-O)2(O2CPh)2(salox)6(L1)2(L2)2] (L1 = py, L2 = H2O (1); L1 = Me2CO, L2 = H2O (2); L1 = L2 = MeOH (3)). Addition of NaOMe to the acetonitrile reaction mixture, afforded the 1D complex [MnIII3Na(μ3-O)(O2CPh)2(salox)3(MeCN)]n (4), whereas addition of NaClO4 to the acetone reaction mixture afforded an analogous 1D complex [MnIII3Na(μ3-O)(O2CPh)2(salox)3(Me2CO)]n (5). The structures of 1–3 present the [Mn63-O)22-OR)2]12+ core and can be described as two [Mn33-O)]7+ triangular subunits linked by two μ2-oximato oxygen atoms of the salox2− ligands, which show the less common μ32OO′:κN coordination mode. The benzoato ligands are coordinated through the usual syn,syn2OO′ mode. The 1D polymeric structures of 4 and 5 consist of alternating [Mn33-O)]7+ subunits and Na+ atoms linked through two μ32OO′:κN and one μ42O2O′:κN salox2− ligands as well as one syn,anti2OO′ benzoato ligand. DC and AC magnetic susceptibility studies on 1 revealed the stabilization of an S = 4 ground state, and indications of single-molecule magnetism behavior, whereas the DC experimental data from polycrystalline sample of 5 are indicative of antiferromagnetic interactions within the [Mn3] subunit. Solid state 1H NMR data of 1 were used to probe the spin-lattice relaxation of the system.  相似文献   

19.
A new ferrocene-containing dicarboxylate ligand, L = 5-ferrocene-1,3-benzenedicarboxylic acid, has been prepared. Self-assembly of L, M(II) salts (M = Co and Zn) and chelating ligands dpa or phen (dpa = 2,2′-dipyridylamine and phen = 1,10-phen) gave rise to four new coordination polymers {[Co(L)(dpa)] · 2MeOH}n (1), {[Zn(L)(dpa)] · 2MeOH}n (2), {[Co(L)(phen)(H2O)] · MeOH} (3), [Zn(L)(phen)(H2O)] · MeOH (4). The isostructural complexes 1 and 2 possess 1D helical chain structures with 21 screw axes along the b-direction, and the right- and left-handed helical chains are alternate arrayed into 2D layer structures through hydrogen-bonding interactions; while isostructural complexes 3 and 4 are 1D linear chain structures with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. A structural comparison of complexes 14 demonstrated that the characteristics of subsidiary ligands and slight difference in coordination models of L play very important role in the construction of the complexes. In addition, the redox properties of complexes 14, as well as the magnetic properties of complexes 1 and 3 are also investigated.  相似文献   

20.
Lithiation of O-functionalized alkyl phenyl sulfides PhSCH2CH2CH2OR (R = Me, 1a; i-Pr, 1b; t-Bu, 1c; CPh3, 1d) with n-BuLi/tmeda in n-pentane resulted in the formation of α- and ortho-lithiated compounds [Li{CH(SPh)CH2CH2OR}(tmeda)] (α-2ad) and [Li{o-C6H4SCH2CH2CH2OR)(tmeda)] (o-2ad), respectively, which has been proved by subsequent reaction with n-Bu3SnCl yielding the requisite stannylated γ-OR-functionalized propyl phenyl sulfides n-Bu3SnCH(SPh)CH2CH2OR (α-3ad) and n-Bu3Sn(o-C6H4SCH2CH2CH2OR) (o-3ad). The α/ortho ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α-3ac were found to react with n-BuLi/tmeda and n-BuLi yielding the pure α-lithiated compounds α-2ac and [Li{CH(SPh)CH2CH2OR}] (α-4ab), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH2CH2Ot-Bu}(tmeda)] (α-2c) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a C,O coordinated organyl ligand. Thus, α-2c is a typical organolithium inner complex.Lithiation of O-functionalized alkyl phenyl sulfones PhSO2CH2CH2CH2OR (R = Me, 5a; i-Pr, 5b; CPh3, 5c) with n-BuLi resulted in the exclusive formation of the α-lithiated products Li[CH(SO2Ph)CH2CH2OR] (6ac) that were found to react with n-Bu3SnCl yielding the requisite α-stannylated compounds n-Bu3SnCH(SO2Ph)CH2CH2OR (7ac). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (1H, 13C, 119Sn).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号