首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This Concept article summarizes recent work on the development of a new form of chiral Raman spectroscopy, e CP-Raman, which combines two spectroscopies: electronic circular dichroism (ECD) and circularly polarized Raman (CP-Raman). First, some puzzling observations while carrying out Raman optical activity (ROA) measurements of several transition metal complexes under resonance are described, as well as the search for the mechanisms responsible. Then an equation for quantifying the e CP-Raman contribution is presented, followed by several examples of how e CP-Raman influences the IRIL spectra of achiral and chiral solvent molecules and of a number of chiral solutes under resonance. The conditions to extract resonance ROA, when the e CP-Raman contribution is minimized, are also discussed. Finally, we comment on the potential applications of e CP-Raman.  相似文献   

2.
Previously, we and other laboratories have reported an unusual and strong Raman optical activity (ROA) induced in solvents by chiral dyes. Various theories of the phenomenon appeared, but they were not capable of explaining fully the observed ROA band signs and intensities. In this work, an analysis based both on the light scattering theory and dedicated experiments provides a more complete understanding. For example, double-cell magnetic circular dichroism and magnetic ROA experiments with copper-porphyrin complex show that the induced chirality is observed without any contact of the solvents with the complex. The results thus indicate that a combination of electronic circular dichroism (ECD) with the polarized Raman scattering is responsible for the effect. The degree of circularity of solvent vibrational bands is a principal molecular property participating in the event. The insight and the possibility to predict the chirality transfer promise future applications in spectroscopy, chemical analysis and polarized imaging.  相似文献   

3.
Poly(phenylacetylene)s are a family of helical polymers constituted by conjugated double bonds. Raman spectra of these polymers show a structural fingerprint of the polyene backbone which, in combination with its helical orientation, makes them good candidates to be studied by Raman optical activity (ROA). Four different well‐known poly(phenylacetylene)s adopting different scaffolds and ten different helical senses have been prepared. Raman and ROA spectra were recorded and allowed to establish ROA‐spectrum/helical‐sense relationships: a left/right‐handed orientation of the polyene backbone (Mhelix/Phelix) produces a triplet of positive/negative ROA bands. Raman and ROA spectra of each polymer exhibited the same profile, and the sign of the ROA spectrum was opposite to the lowest‐energy electronic circular dichroism (ECD) band, indicating a resonance effect. Resonance ROA appears then as an indicator of the helical sense of poly(phenylacetylene)s, especially for those with an extra Cotton band in the ECD spectrum, where a wrong helical sense is assigned based on ECD, while ROA alerts of this misassignment.  相似文献   

4.
The geometry and the electronic structure of chiral lanthanide(III) complexes are traditionally probed by electronic methods, such as circularly polarised luminescence (CPL) and electronic circular dichroism (ECD) spectroscopy. The vibrational phenomena are much weaker. In the present study, however, significant enhancements of vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectral intensities were observed during the formation of a chiral bipyridine–EuIII complex. The ten‐fold enhancement of the vibrational absorption and VCD intensities was explained by a charge‐transfer process and the dominant effect of the nitrate ion on the spectra. A much larger enhancement of the ROA and Raman intensities and a hundred‐fold increase of the circular intensity difference (CID) ratio were explained by the resonance of the λ=532 nm laser light with the 7F05D0 transitions. This phenomenon is combined with a chirality transfer, and mixing of the Raman and luminescence effects involving low‐energy 7F states of europium. The results thus indicate that the vibrational optical activity (VOA) may be a very sensitive tool for chirality detection and probing of the electronic structure of EuIII and other coordination compounds.  相似文献   

5.
The histidine residue has an exceptional affinity for metals, but solution structure of its complexes are difficult to study. For zinc and nickel complexes, Raman and Raman optical activity (ROA) spectroscopy methods to investigate the link between spectral shapes and the geometry were used. The spectra were recorded and interpreted on the basis of ionic equilibria, molecular dynamics, ab initio molecular dynamics, and density functional theory. For zwitterionic histidine the dominant tautomer was determined by the decomposition of experimental spectra into calculated subspectra. An octahedral structure was found to prevail for the ZnHis2 complex in solution, in contrast to a tetrahedral arrangement in the crystal phase. The solution geometry of NiHis2 is more similar to the octahedral structure found by X-ray. The Raman and ROA structural determinations of metal complexes are dependent on extensive computations, but reveal unique information about the studied systems.  相似文献   

6.
Raman and Raman optical activity (ROA) spectroscopy are used to study the solution‐phase structure of the glycan moiety of the protein ribonuclease B (RNase B). Spectral data of the intact glycan moiety of RNase B is obtained by subtracting high‐quality spectral data of RNase A, the non‐glycosylated form of the RNase, from the spectra of the glycoprotein. The remaining difference spectra are compared to spectra generated from Raman and ROA data of the constituent disaccharides of the RNase glycan, achieving convincing spectral overlap. The results show that ROA spectroscopy is able to extract detailed spectral data of the glycan moieties of proteins, provided that the non‐glycosylated isoform is available. Furthermore, good comparison between the full glycan spectrum and the regenerated spectra based on the disaccharide data lends great promise to ROA as a tool for the solution‐phase structural analysis of this structurally elusive class of biomolecules.  相似文献   

7.
A combined theoretical and experimental study of the vibrational absorption (VA)/IR, vibrational circular dichroism (VCD), Raman and Raman optical activity (ROA) spectra of l-histidine in aqueous solution has been undertaken to answer the questions (i) what are the species present and (ii) which conformers of the species are present under various experimental conditions. The VA spectra of l-histidine have been measured in aqueous solution and the spectral bands which can be used to identify both species (cation, zwitterion, anion) and conformer of the species have been identified and subsequently used to identify the species (zwitterion) and conformer (gauche minus minus, gauche minus plus for the side chain dihedral angles) present in solution at pH 7.6. The VCD spectral intensities have been used subsequently in combination with further theoretical studies to confirm the conclusions that have been arrived at by only analyzing the VA/IR spectra. Finally a comparison of measured Raman and ROA spectra of l-histidine with Raman and ROA spectral simulations for the conformers and species derived from the combined VA/IR and VCD experimental and theoretical work is presented as a validation of the conclusions arrived at from VA/IR and VCD spectroscopy. The combination of VA/IR and VCD with Raman and ROA is clearly superior and both sets of experiments should be performed.  相似文献   

8.
We describe a quantum‐chemical approach for the determination of modes with maximum Raman and Raman optical activity (ROA) intensity by maximizing the intensities with respect to the Raman and Raman optical activity intensity, respectively, which is shown to lead to eigenvalue equations. The intensity‐carrying modes are in general hypothetical modes and do not directly correspond to a certain normal mode in the spectrum. However, they provide information about those molecular distortions leading to intense bands in the spectrum. Modes with maximum Raman intensity are presented for propane‐1,3‐dione, propane‐1,3‐dionate, and Λ‐tris(propane‐1,3‐dionato)cobalt(III). Moreover, the mode with highest ROA intensity is examined for this chiral cobalt complex and also for the (chiral) amino acid L ‐tryptophan. The Raman and ROA high‐intensity modes are an optimal starting guess for intensity‐tracking calculations, in which selectively normal modes with high Raman or ROA intensity are converged. We present the first Raman and ROA intensity‐tracking calculations. These reveal a high potential for large molecules, for which the selective calculation of normal modes with high intensity is desirable in view of the large computational effort required for the calculation of Raman and ROA polarizability property tensors.  相似文献   

9.
Raman optical activity (ROA) detects the intensity difference between right and left circularly polarized scattered light, and thus brings about enhanced information about the molecules under investigation. The difference is quite small and the technique is mostly constrained to the condensed phase. For NO2 in the presence of a static magnetic field, however, the ROA signal with high ROA/Raman intensity ratio was observed. The signal is so strong owing to molecular paramagnetism and a pre‐resonance signal enhancement. The spectral shape was explained on the basis of the Fermi golden rule and rotational wave functions expanded to a spherical top basis. The results indicate that the technique can be immediately used to obtain information about molecular properties, such as polarizability components. It also has a potential to detect other paramagnetic gases and discriminate among them.  相似文献   

10.
Circularly polarized luminescence (CPL) spectra are extremely sensitive to molecular structure. However, conventional CPL measurements are difficult and require expensive instrumentation. As an alternative, we explore CPL using Raman scattering and Raman optical activity (ROA) spectroscopy. The cesium tetrakis(3‐heptafluoro‐butylryl‐(+)‐camphorato) europium(III) complex was chosen as a model as it is known to exhibit very large CPL dissymmetry ratio. The fluorescent bands could be discriminated from true Raman signals by comparison of spectra acquired with different laser excitation wavelengths. Furthermore, the ROA technique enables fluorescence identification by measuring the degree of circularity. The CPL dissymmetry ratio was measured as the ROA circular intensity difference of 0.71, the largest one ever reported. The alternative CPL measurement enhances applications of lanthanides in analytical chemistry and chemical imaging of biological objects.  相似文献   

11.
The Raman optical activity (ROA) spectra of proteins show distinct patterns arising from the secondary structure. It is generally believed that the spectral contributions of the side-chains largely cancel out because of their flexibility and the occurrence of many side-chains with different conformations. Yet, the influence of the side-chains on the ROA patterns assigned to different secondary structures is unknown. Here, the first systematic study of the influence of all amino acid side-chains on the ROA patterns is presented based on density functional theory (DFT) calculations of an extensive collection of peptide models that include many different side-chain and secondary structure conformations. It was shown that the contributions of the side-chains to a large extent average out with conformational flexibility. However, specific side-chain conformations can have significant contributions to the ROA patterns. It was also shown that α-helical structure is very sensitive to both the exact backbone conformation and the side-chain conformation. Side-chains with χ1≈−60° generate ROA patterns alike those in experiment. Aromatic side-chains strongly influence the amide III ROA patterns. Because of the huge structural sensitivity of ROA, the spectral patterns of proteins arise from extensive conformational averaging of both the backbone and the side-chains. The averaging results in the fine spectral details and relative intensity differences observed in experimental spectra.  相似文献   

12.
The tryptophan (Trp) aromatic residue in chiral matrices often exhibits a large optical activity and thus provides valuable structural information. However, it can also obscure spectral contributions from other peptide parts. To better understand the induced chirality, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and Raman optical activity (ROA) spectra of Trp‐containing cyclic dipeptides c‐(Trp‐X) (where X=Gly, Ala, Trp, Leu, nLeu, and Pro) are analyzed on the basis of experimental spectra and density functional theory (DFT) computations. The results provide valuable insight into the molecular conformational and spectroscopic behavior of Trp. Whereas the ECD is dominated by Trp π–π* transitions, VCD is dominated by the amide modes, well separated from minor Trp contributions. The ROA signal is the most complex. However, an ROA marker band at 1554 cm?1 indicates the local χ2 angle value in this residue, in accordance with previous theoretical predictions. The spectra and computations also indicate that the peptide ring is nonplanar, with a shallow potential so that the nonplanarity is primarily induced by the side chains. Dispersion‐corrected DFT calculations provide better results than plain DFT, but comparison with experiment suggests that they overestimate the stability of the folded conformers. Molecular dynamics simulations and NMR results also confirm a limited accuracy of the dispersion‐DFT model in nonaqueous solvents. Combination of chiral spectroscopies with theoretical analysis thus significantly enhances the information that can be obtained from the induced chirality of the Trp aromatic residue.  相似文献   

13.
The vibrational Raman optical activity (ROA) spectra of (2R,3R)-(+) tartaric acid-d0 in H2O and (2R,3R)-(+) tartaric acid-d4 in D2O between 300 and 1800 cm−1 measured in backscattering are reported. Ab initio Raman intensifies were evaluated using basis sets at 6-31G, 6-31G* and double zeta plus polarization (DZP) levels. Ab initio ROA intensities were obtained at two levels: in one calculation both the normal coordinates and the polarizability and optical activity tensor derivatives were evaluated with the 6-31G basis set; in a second calculation normal coordinates obtained with the DZP basis set were used to evaluate the normal coordinate derivatives of polarizability and optical activity tensors from the corresponding Cartesian derivative tensors obtained with the 6-31G basis set. Sufficiently good correlation was found between many of bands in the theoretical and experimental Raman and ROA spectra for both the -d0 and -d4 species to confirm that the absolute configuration of the ( + )-enantiomer is indeed (2R,3R) and to suggest that the trans COOH and trans COOD conformations are dominant. Tartaric acid-d4 shows very similar ROA to tartaric acid itself in the range 300–800 cm−1 but quite different in the range 800–1450 cm−1, which provides insight into the influence of normal mode composition on ROA spectra. It was found that the normal mode compositions are much more sensitive to the level of basis set used than the polarizability and optical activity tensor derivatives.  相似文献   

14.
Motivated by experimental work on the distinction of protein secondary structure motifs by Raman optical activity (ROA) spectroscopy, we demonstrate using density functional theory that axial chirality in structures with different local chirality can be filtered out by ROA spectroscopy. To this purpose, two diastereomers of right-handed helical deca-alanine, the (all-S) and the (R,S,R,S,R,S,R,S,R,S) form, are compared. Furthermore, we suggest to interpret calculated ROA spectra of large molecules in terms of vibrational bands rather than individual peaks. This is due to the non-homogeneous effect of the harmonic approximation as well as of the chosen electronic structure method onto the vibrational frequencies, which in a dense region of many vibrations will strongly determine the shape of the spectrum. In addition, the calculated ROA spectrum of (all-S)-deca-alanine is compared to the experimental spectrum of poly-(L)-alanine in solution.  相似文献   

15.
Resonance Raman optical activity (RROA) spectra with high sensitivity reveal details on molecular structure, chirality, and excited electronic properties. Despite the difficulty of the measurements, the recorded data for the Co(III) complex with S,S-N,N-ethylenediaminedisuccinic acid are of exceptional quality and, coupled with the theory, spectacularly document the molecular behavior in resonance. This includes a huge enhancement of the chiral scattering, contribution of the antisymmetric polarizabilities to the signal, and the Herzberg-Teller effect significantly shaping the spectra. The chiral component is by about one order of magnitude bigger than for an analogous aluminum complex. The band assignment and intensity profile were confirmed by simulations based on density functional and vibronic theories. The resonance was attributed to the S0S3 transition, with the strongest signal enhancement of Raman and ROA spectral bands below about 800 cm−1. For higher wavenumbers, other excited electronic states contribute to the scattering in a less resonant way. RROA spectroscopy thus appears as a unique tool to study the structure and electronic states of absorbing molecules in analytical chemistry, biology, and material science.  相似文献   

16.
The vibrational Raman optical activity (ROA) spectra of l-alanine in water, 1 N NaOH and 1 N HCl between 720 and 1500 cm−1 measured in backscattering are reported. Unlike the associated vibrational circular dichroism (VCD), the main ROA features are relatively insensitive to pH changes. Ab initio Raman and ROA intensities were evaluated using 6-31G and 6-31G* basis sets and found to agree remarkably well with the experimental parameters in the lower-frequency region.  相似文献   

17.
Raman optical activity (ROA) is pursued as a promising method for structural analyses of sugars in aqueous solutions. In the present study, experimental Raman and ROA spectra of glucose and sorbose obtained in an extended range (50–4000 cm−1) are interpreted using molecular dynamics and density functional theory, with the emphasis on CH stretching modes. A reasonable theoretical basis for spectral interpretation was obtained already at the harmonic level. Anharmonic corrections led to minor shifts of band positions (up to 25 cm−1) below 2000 cm−1, while the CH stretching bands shifted more, by ∼180 cm−1, and better reproduced the experiment. However, the anharmonicities could be included on a relatively low approximation level only, and they did not always improve the harmonic band shapes. The dependence on the structure and conformation shows that the CH stretching ROA spectral pattern is a sensitive marker useful in saccharide structure studies.  相似文献   

18.
Structural analysis of carbohydrates is a complicated endeavour, due to the complexity and diversity of the samples at hand. Herein, we apply a combined computational and experimental approach, employing molecular dynamics (MD) and density functional theory (DFT) calculations together with NMR and Raman optical activity (ROA) measurements, in the structural study of three mannobiose disaccharides, consisting of two mannoses with varying glycosidic linkages. The disaccharide structures make up the scaffold of high mannose glycans and are therefore important targets for structural analysis. Based on the MD population analysis and NMR, the major conformers of each mannobiose were identified and used as input for DFT analysis. By systematically varying the solvent models used to describe water interacting with the molecules and applying overlap integral analysis to the resulting calculational ROA spectra, we found that a full quantum mechanical/molecular mechanical approach is required for an optimal calculation of the ROA parameters. Subsequent normal mode analysis of the predicted vibrational modes was attempted in order to identify possible marker bands for glycosidic linkages. However, the normal mode vibrations of the mannobioses are completely delocalised, presumably due to conformational flexibility in these compounds, rendering the identification of isolated marker bands unfeasible.  相似文献   

19.
The redox dye Neutral red (NR), adsorbed and electropolymerized at a roughened gold electrode, has been studied by Raman spectroscopy at λex of 676.4 nm in an electrochemical cell. Spectral bands have been assigned based on density functional theory (DFT) calculations. The number and position of the bands, as well as their intensity depend on electrode potential, allowing one to discern different redox forms of NR or its polymer. The observed changes in band positions and intensities have been analyzed. Electrooxidation of hydroquinone and ascorbic acid at a gold electrode modified with adsorbed or electropolymerized layer of NR has been studied with in situ Raman spectroelectrochemical technique. During electrooxidation of solution species, NR layer contains both oxidized and reduced forms of this modifier. It has been shown that the relative content of a reduced form of NR at electrode surface increases with increasing concentration of any of oxidizable species used. It has been concluded that anodic oxidation of ascorbic acid or hydroquinone at NR or polyNR modified electrode proceeds within the modifier layer rather than at a modifier/electrolyte interface. In this respect, electrooxidation follows a redox mechanism.  相似文献   

20.
Raman spectroscopy including mapping technique appears as a powerful technique for the characterization of polymer blends like thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs). The Raman spectra of polymers blends such as natural rubber/polypropylene (NR/PP) and 65% hydrogenated natural rubber/polypropylene (65%HNR/PP) were identified and the phase distribution was determined. The study was driven for the same type of blends in TPEs state and TPVs state obtained after to 2 different processes, either peroxide cure or sulfur cure. The morphology of TPEs and TPVs obtained by Raman spectroscopy were compared and confirmed using scanning electronic microscopy.Raman mapping shows that the phase morphology of NR/PP, 65%HNR/PP, were characterized as continuous rubber phase morphology of the thermoplastic elastomers (TPEs) and a fine dispersion of cross-linked rubber phase in a continuous matrix of the thermoplastic vulcanizates (TPVs). Raman spectroscopy is demonstrated to be a reference to determine the content ratio of each component in the TPVs. Moreover, Raman mapping could be used to calculate the phase size of cross-linked rubber phase dispersed in the thermoplastic vulcanizates (TPVs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号