首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the generalized Huygens–Fresnel integral, analytical propagation formulas for a general-type beam propagating through aligned or misaligned ABCD optical systems in turbulent atmosphere are derived. The derived formulas provide a convenient way for studying the focusing properties of a variety of laser beams, such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams in turbulent atmosphere. As an application example, the focused intensities of cos-Gaussian, Hermite-sine-Gaussian and flat-topped beams in turbulent atmosphere are studied numerically. Focal shift of a flat-topped beam in turbulent atmosphere is investigated. Effect of the misalignment of the thin lens on the focusing properties of a cos-Gaussian beam is also explored. Our results will be useful for the applications of the general-type beam in LIDAR systems and remote sensing operating in turbulent atmosphere, where optical elements such as aligned or misaligned thin lens are commonly encountered.  相似文献   

2.
戈迪  蔡阳健  林强 《中国物理》2005,14(1):128-132
利用张量方法导出了部分偏振高斯-谢尔模光束在准直和失调光学系统中的相干-偏振矩阵的传输公式,并以经过失调薄透镜为例,详细讨论了部分偏振GSM光束的传输特性。导出的公式提供了一个研究部分偏振GSM光束在准直和失调光学系统中传输的简便方法。  相似文献   

3.
By expanding the hard aperture function into a finite sum of complex Gaussian functions, some approximate analytical formulae for the cross-spectral density of a partially coherent flattened Gaussian beam (FGB) propagating through apertured aligned and misaligned ABCD optical systems are derived based on the generalized Collins formula. The results obtained by using the approximate analytical formula are in good agreement with those obtained by using the numerical integral calculation. As a numerical example, the focusing properties (including average irradiance distribution and focal shift) of a partially coherent FGB focused by an apertured thin lens are studied, and it is found that the focusing properties of a partially coherent FGB are closely related to its initial coherence and the aperture width. Our results provide an effective and fast way for studying the paraxial propagation of a partially coherent FGB through apertured ABCD optical systems.  相似文献   

4.
Chongwei Zheng 《Optik》2007,118(11):552-556
Off-axis flat-topped multi-Gaussian beam is proposed as an extension of flat-topped multi-Gaussian beam. The electric field of off-axis flat-topped multi-Gaussian beam is expressed as a superposition of a series of off-axis Gaussian beams. Propagation formulae for off-axis flat-topped multi-Gaussian beam through aligned and misaligned optical system are derived. As a numerical example, propagation properties of off-axis flat-topped multi-Gaussian beam in free space and through a misaligned thin lens are discussed.  相似文献   

5.
Chongwei Zheng 《Optik》2005,116(12):563-567
Based on a tensor method, the propagation formulae of elliptical flat-topped beam through aligned and misaligned optical systems in spatial-frequency domain are derived analytically. The derived formulae provide a powerful tool for treating the propagation and transformation of elliptical flat-topped beam through complex optical systems in spatial-frequency domain. As a numerical example, the propagation properties of elliptical flat-topped Gaussian beam in free space are studied in spatial-frequency domain.  相似文献   

6.
The propagation formulae of elliptical Gaussian beam through misaligned optical systems in spatial domain and spatial-frequency domain are investigated analytically by using tensor method. The derived formulae provide a powerful tool for treating the propagation and transformation of elliptical Gaussian beam through misaligned optical systems. As an application example, the propagation properties of elliptical Gaussian beam through a misaligned thin lens are illustrated.  相似文献   

7.
Based on the generalized diffraction integral formula for treating the propagation of a laser beam through a slightly misaligned optical system in a cylindrical coordinate system, an analytical formula for a Laguerre–Gaussian beam passing through such an optical system is derived. Furthermore, an approximate analytical formula is derived for a Laguerre–Gaussian beam passing through an apertured slightly misaligned optical system by expanding the hard aperture function as a finite sum of complex Gaussian functions. Some analytical formulas are also given for a flattened Gaussian beam by expanding its field as a superposition of a finite series of Laguerre–Gaussian beams. PACS 42.25.Bs; 41.85.Ew; 41.85.Ct  相似文献   

8.
Huilian Jiang  Daomu Zhao   《Optik》2006,117(5):215-219
By means of expanding a hard-edged aperture into a finite sum of complex Gaussian functions, the approximate analytical formula of one kind of higher-order Gaussian beams called the Hermite–Gaussian beams (HGBs) passing through circular apertured and misaligned optical system is obtained in this paper. The result provides more convenience for studying its propagation than the usual way by using diffraction integral directly. Some numerical simulations are also given for illustrating the propagation properties of the HGBs through the circular apertured optical systems.  相似文献   

9.
Based on the generalized diffraction integral formula for treating the propagation of a laser beam through a paraxial misaligned optical system in the cylindrical coordinate system, we obtain an analytical formula for a hollow Gaussian beam passing through a paraxial misaligned optical system. Furthermore, we also obtain the approximate analytical formula for a hollow Gaussian beam passing through a paraxial circularly apertured misaligned optical system by expanding the hard aperture function into a finite sum of complex Gaussian functions. As a numerical example, the propagation properties a hollow Gaussian beam through a misaligned thin lens are studied numerically.  相似文献   

10.
《Physics letters. A》2006,360(2):394-399
Based on the generalized diffraction integral formula for treating the propagation of a laser beam through a misaligned paraxial ABCD optical system in the cylindrical coordinate system, analytical formula for a circular flattened Gaussian beam propagating through such optical system is derived. Furthermore, an approximate analytical formula is derived for a circular flattened Gaussian beam propagating through an apertured misaligned ABCD optical system by expanding the hard aperture function as a finite sum of complex Gaussian functions. Numerical examples are given.  相似文献   

11.
By introducing a hard aperture function into a finite sum of complex Gaussian functions, an approximate analytical expression for the two-dimensional off-axial Hermite-cosh-Gaussian beams passing through a rectangular apertured and misaligned paraxially ABCD optical system has been derived. The results provide more convenience for studying their propagation and transformation than the usual way by using diffraction integral directly. Some numerical simulations are also illustrated for the propagation characteristics of a two-dimensional off-axial Hermite-cosh-Gaussian beam through a rectangular apertured ABCD optical system.  相似文献   

12.
A new kind of laser beam named off-axis elliptical flat-topped beam is proposed. This beam is expressed as a finite series of off-axis elliptical Gaussian beams with different beam parameters. Analytical propagation formulas for the off-axis elliptical flat-topped beam through aligned and misaligned optical systems are derived. As a numerical example, the propagation properties of the off-axis elliptical flat-topped beam in free space are calculated and discussed.  相似文献   

13.
A closed-form expression for the one-dimensional off-axial cosine-Gaussian beams passing through an apertured and misaligned paraxially ABCD optical system is derived. As special cases, the corresponding closed-forms for the off-axial or non off-axial cosine-Gaussian beams passing through apertured or unapertured and misaligned or aligned optical systems are also given. The obtained results could be straightforward to the two-dimensional case or sine-Gaussian beams.  相似文献   

14.
Based on the fact that a hard aperture function can be expanded into a finite sum of complex Gaussian functions, the approximate analytical expression for the output field distribution of a rectangular flattened Gaussian beam passing through a circular apertured and misaligned paraxial ABCD system is derived. The result brings more convenient for studying its propagation than the usual way by using diffraction integral directly. Some numerical simulations are also given for illustrating the propagation properties of a rectangular flattened Gaussian beam through a circular apertured and misaligned optical system.  相似文献   

15.
Based on the generalized diffraction integral, we derive an analytical formula for generalized Mathieu–Gauss beams (gMGBs) passing through an apertured misaligned optical system. Furthermore, we use the fact that a hard aperture function can be expanded into a finite sum of complex Gaussian functions to establish an approximate propagation equation of gMGBs through paraxial circularly apertured optical system. As an example, the propagation of ordinary and modified zeroth order MGBs through a misaligned thin lens is studied numerically.  相似文献   

16.
A generalized formula of hollow Gaussian beams through the first-order misaligned ABCD systems is derived by using the generalized diffraction integral formula. It is shown that the hollow Gaussian beam passing through the misaligned system becomes a decentred hollow Gaussian beam. The propagation properties of the output beam are investigated when it propagates through a simple misaligned lens system. These results provide a powerful theoretical tool for applications of optical traps.  相似文献   

17.
Daomu Zhao  Haidan Mao  Dong Sun 《Optik》2003,114(12):535-538
The approximate analytical expression for the kurtosis parameter of off-axial Hermite-cosine-Gaussian beams (HCosGBs) propagating through apertured and misaligned ABCD optical systems is derived based on the approximate propagation equation of off-axial HCosGBs and an example is given to illustrate for its application. The method used in this paper could be extended to studying the kurtosis parameter of the Hermite-sinusoidal-Gaussian beams passing through apertured and misaligned ABCD optical systems.  相似文献   

18.
Zhangrong Mei   《Optik》2007,118(8):361-366
A new kind of laser beam called the elliptical elegant Laguerre–Gaussian beam (EELGB) is defined by using tensor method. By using the generalized diffraction integral formulas for light beam passing through paraxial optical system, the analytical propagation formulas for EELGB passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, the propagation properties of EELGBs in free space propagation and through a misaligned thin lens are studied.  相似文献   

19.
The propagation of elliptical Gaussian beam passing through paraxial optical systems with aperture is investigated analytically by using tensor method. The approximate formula for propagation of elliptical Gaussian beam through hard apertured optical systems is derived based on the fact that the circ function can be expanded into a finite sum of complex Gaussian functions. The derived formula provides a convenient tool for treating the propagation and transformation of elliptical Gaussian beam through apertured optical systems. As an application example, the propagation properties of elliptical Gaussian beam through apertured fractional Fourier systems are discussed.  相似文献   

20.
Propagation of a flat-topped beam of circular or non-circular (rectangular or elliptical) symmetry through an apertured optical system is investigated. By expanding the hard aperture function as a finite sum of complex Gaussian functions, some approximate analytical propagation formulas are derived for a flat-topped beam of circular or non-circular (rectangular or elliptical) symmetry propagating through an apertured paraxial general astigmatic (GA) optical system or an apertured paraxial misaligned stigmatic (ST) optical system. The derived formulas are very fast to compute. The results obtained by using the approximate analytical expressions are in a good agreement with those obtained by direct numerical integration. The present analytical formulas provide a convenient and effective way for studying the propagation and transformation of a circular or non-circular flat-topped beam through an apertured general optical system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号