首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Structural transformation and the related variation in magnetic and optical properties of Co3?x Fe x O4 thin films grown by a sol–gel method have been investigated as the Fe composition varies up to x?=?2. The normal spinel phase is dominant below x?=?0.55 and the inverse spinel phase grows as x increases further. Conversion electron Mössbauer spectroscopy (CEMS) measurements indicate that the normal spinel phase have octahedral Fe3+ ions mostly while the inverse spinel phase contain octahedral Fe2+ and tetrahedral Fe3+ ions. For higher Fe composition (x?>?1.22), Co2+ ions are found to substitute the octahedral Fe2+ sites. The measured optical absorption spectra for the Co3?x Fe x O4 films by spectroscopic ellipsometry support the CEMS interpretation.  相似文献   

2.
Total and partial density of states, frequency dependent complex refractive index including extinction coefficient, optical conductivity and transmission of MgxZn1−xO (0≤x≤1) in rocksalt and wurtzite phases are calculated using full potential linearized augmented plane wave (FP-LAPW) method. The real part of refractive index decreases while the extinction coefficient, optical conductivity and transmission for rocksalt phase increases with the increase in Mg concentration. In wurtzite phase, ordinary and extraordinary indices decrease while extinction coefficient, optical conductivity and transmission increase in parallel as well as perpendicular to c-axis with the increase in the Mg concentration.  相似文献   

3.
Raman scattering and optical depolarization measurements on K1?xLixTa1?yNByO3 with y ? 0.028 and x ? 0.06 show that lithium impurities destabilize the niobium-induced rhombohedral ferroelectric phase. With increasing x the phase transition is altered from a soft-mode dominated transition to a disorder-order transition into a tetragonal phase. The dependence of Tc on x disagrees with the predictions of classical mean-field theory.  相似文献   

4.
The long-wavelength optical phonons of the layer GaSe1?xTex have been investigated at room temperature by means of Raman scattering spectroscopy. The spectra of the Bridgman grown crystals were excited with the 1,06 μm line of the continuously operated YAG:Nd3+ laser. Detailed study of the Raman spectra of GaSe1?xTex solid solutions showed that there is an abrupt change in the frequency-composition dependences for all observed modes. It is shown, that a phase transition from hexagonal ?-GaSe to monoclinic GaTe in GaSe1?xTex solid solutions takes place in the composition range 0.27 ? × ? 0.72. Only one mode behaviour of the optical phonons was observed in GaSe1?xTex system.  相似文献   

5.
The features observed in the frequency and temperature dependences of the optical spectra of doped manganites can be accounted for by assuming the latter to have inhomogeneous phase composition. The spectral response of the optical conductivity of the La1?xSrxMnO3 system was calculated in the effective-medium approximation over a broad range of x variation.  相似文献   

6.
The phase separation in amorphous silicon suboxide (a-SiOx) films upon thermal annealing for the formation of light emitting silicon nanocrystals (Si-NCs) was studied through the correlation of photoluminescence (PL) and photoluminescence excitation (PLE) with structural and optical properties. The PL and PLE features and the structural and optical properties show a strong dependence on the annealing process and reveal that the precipitation of the excess Si in a-SiOx and the formation of Si-NCs from the precipitated Si are two separate processes which should be distinguished in the phase separation in a-SiOx. They proceed at different temperatures and the formation of Si-NCs is a slow process compared with the precipitation of the excess Si. The nanocrystal size and size distribution evolve with annealing time at the initial stages and are mainly dependent on annealing temperature for a certain O content in the initial a-SiOx with the density of the formed Si-NCs increasing with longer annealing duration.  相似文献   

7.
The effects of substrate temperature upon the optical property, composition and surface morphology have been investigated on nominally undoped Zn1−xMgxTe layers grown on (1 0 0) ZnTe substrates by atmospheric pressure metal organic vapor phase epitaxy (MOVPE). It was found that Mg composition increases with decreasing substrate temperature. The result of low temperature photoluminescence (PL) measurement suggests that the optical quality of Zn1−xMgxTe layers becomes better with decreasing substrate temperature. On the other hand, there is a narrow range of optimal substrate temperature for a smooth surface morphology. For all the layers, a two-mode behavior with ZnTe- and MgTe-like longitudinal optical phonon modes was confirmed by Raman scattering.  相似文献   

8.
We report on the analysis of optical transmittance spectra and the resulting ferromagnetic characteristics of sputtered Zn1−xCoxO films. Zn1−xCoxO films were prepared on (0001)-oriented Al2O3 substrates by the radio-frequency (rf) magnetron co-sputtering method. The XRD results showed that the crystallinity of films was properly maintained up to x=0.30 and no second phase peaks were detected up to x=0.40. The transmittance spectra showed both the increase of the absorption band intensity and the red shift of the absorption peak as well as the band edge with increasing x. We have proved experimentally that these changes depend on Co concentration. These optical properties suggest that sp-d exchange interactions and typical d-d transitions become activated with increasing x, which leads to the enhancement of ferromagnetic properties in Zn1−xCoxO films as shown in the AGM results. Therefore, it is concluded that the ferromagnetism derives from the substitution of Co2+ for Zn2+ without changing the wurtzite structure.  相似文献   

9.
The magnetic, electrical, and optical properties of Ca1 ? x LaxMnO3 ? δ(x ≤ 0.12) manganite single crystals have been studied. The state with a spatially inhomogeneous electron distribution has been found. Interrelations between the electric and magnetic subsystems are analyzed. The obtained magnetic data show evidence for the formation of a G-type antiferromagnetic (G-AFM) phase with a spin-canted structure in the crystal with x = 0.05, for which the Curie and Néel temperatures are T C = T N(G) = 115 K. On cooling from the paramagnetic state, the crystals with x = 0.10 and 0.12 exhibit transitions from the paramagnetic to a C-type antiferromagnetic (C-AFM) phase in a part of the volume at T N(C) = 150 and 200 K, and from the paramagnetic to the G-type antiferromagnetic (G-AFM) phase in the remaining volume at T N(G) = 110 and 108 K, respectively. The onset of the C-type magnetic phase nucleation in crystals is observed at lower dopant (La) concentrations than in polycrystalline samples, which is explained by the deviation of single crystals from the stoichiometry with respect to oxygen. The magnetic phase transitions are manifested by anomalies in the electric resistance and magnetoresistance of doped crystals. An analysis of the electrical and optical properties of the samples shows evidence of (i) the formation of a charge energy gap in the C-AFM phase with retained paramagnetic metallic regions and (ii) the presence of ferromagnetic “metallic” droplets in the insulating G-AFM phase. The multiphase state of Ca1 ? x LaxMnO3 ? δ manganite single crystals featuring the coexistence of two magnetic phases, the regions with orbital/charge ordering, and the FM “metallic” droplets is related to a competition of exchange interactions by the superexchange and double exchange mechanisms.  相似文献   

10.
Magnetic and optical properties of FexCo3−xO4 thin films grown by sol–gel method have been investigated as the Fe composition (x  ) increases from 0 to 2. X-ray diffraction measurements revealed that the normal- and inverse-spinel phases coexist for 0.76?x?0.930.76?x?0.93. The normal-spinel phase is dominant below x=0.76x=0.76 while the inverse-spinel phase above x=0.93x=0.93. The lattice constant of the inverse-spinel phase is found to be larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. The FexCo3−xO4 films containing the inverse-spinel phase exhibit net magnetization that increases with increasing x  . Conversion electron Mössbauer spectrum measured on the x=0.93x=0.93 sample showed that Fe2+ ions prefer the octahedral sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates a dominance of the normal-spinel phase for low x in which Fe3+ ions mostly occupy the octahedral sites. Observation of a crystal-field transition at 1.6 eV originating from tetrahedral Fe3+ ion confirms the existence of the inverse-spinel phase for high x.  相似文献   

11.
Zn1−xCdxO nanocrystalline powder with different Cd contents (0≤x≤1) has been prepared by new facile sol–gel route. The crystal structure and optical properties were investigated by X-ray diffraction patterns, Transmission electron microscope, X-ray photoelectron spectroscopy, Photoluminescence. As x varied from x=0 to 0.25, the Zn1−xCdxO nanopowder exhibits a hexagonal wurtzite structure of pure ZnO without any significant formation of a separated CdO phase. For the samples with 0.5≤x≤0.85, the Zn1−xCdxO nanopowder exhibits the coexistence of hexagonal ZnO and cubic CdO phase, meanwhile, the content of ZnO phase decreases while that of CdO increases with increasing the Cd content x. The ultra-violet near-band-edge emission of the Zn1−xCdxO nanopowder was monotonously red-shifted from 389 nm (x=0) to 406 nm (x=0.25) due to the direct modulation of band gap caused by Cd substitution.  相似文献   

12.
Compositional behavior of Urbach absorption edge is studied as well as the effect of compositional disordering on the parameters of exciton-phonon interaction, phase transition temperatures and electric conductivity in Cu6P(S1−xSex)5Br1−yIy superionic solid solutions. The effect of different types of disordering on the optical absorption processes and specific features of compositional changes in the absorption edge spectra under S→Se and Br→I anion substitution in the mixed crystals are investigated. (x, T) phase diagrams for Cu6P(S1−xSex)5X (X=I, Br) solid solutions are studied.  相似文献   

13.
The triethylgallium/trimethylantimony (TEGa/TMSb) precursor combination was used for the metal-organic vapour phase epitaxial growth of GaSb at a growth temperature of 520 °C at atmospheric pressure. Trimethylindium was added in the case of Ga1−xInxSb growth. The effects of group V flux to group III flux ratio (V/III ratio) on the crystallinity and optical properties of GaSb layers are reported. It has been observed from the crystalline quality and optical properties that nominal V/III ratios of values greater than unity are required for GaSb epitaxial layers grown at this temperature. It has also been shown that Ga1−xInxSb can be grown using TEGa as a source of gallium species at atmospheric pressure. The relationship between Ga1−xInxSb vapour composition and solid composition has been studied at a V/III ratio of 0.78.  相似文献   

14.
The intermediate-valence state of Sm in Sm1?xYxS has been investigated in terms of the d.c. and optical scattering time of the conduction electrons. Strong resonant scattering in the collapsed metallic phase is attributed to the pinning of the Fermi level EF within a mixed-configuration resonant state. The composition- and temperature dependent electronic phase transition is found to occur when EF reaches the resonant state.  相似文献   

15.
Thermal, physical, structural, optical, and dielectric investigations have been performed for oxyfluoride solid solutions (NH4)2W1 — x Mo x O2F4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1). The character of the influence of the chemical and hydrostatic pressures on the stability of the parent (space group Cmcm) and distorted ferroelastic and antiferroelectric phases has been determined by analyzing the temperature-pressure, unit cell volume-composition, and temperature-composition phase diagrams. The specific features of the nature and mechanism of the phase transitions have been discussed using the available data on the structural, entropy, and dielectric parameters.  相似文献   

16.
《Current Applied Physics》2018,18(6):698-716
Influence of doping of mercury atom(s) on optoelectronic properties of binary cadmium chalcogenides have been investigated theoretically by designing the mercury doped cadmium chalcogenide ternary alloys in B3 phase at some specific Hg-concentrations and studying their optoelectronic properties using DFT based FP-LAPW methodology. The structural properties are computed using WC-GGA, while spin-orbit coupling included electronic and optical properties are computed using TB-mBJ, EV-GGA, B3LYP and WC-GGA exchange-correlation functionals. In addition, electronic properties of mercury chalcogenides are calculated precisely using the GGA+U functionals. The concentration dependence of lattice parameter and bulk modulus of each of the HgxCd1−xS, HgxCd1−xSe, HgxCd1−xTe alloy systems show almost linearity. For each of the alloy systems, band gap decreases almost linearly with increase in Hg-concentration in the unit cell and contribution from charge exchange to the band gap bowing is larger than that from for each of the volume deformation and structural relaxation. Also, covalent bonding exists between different constituent atoms in each compound. Optical properties of each specimen are computed from their spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption coefficient and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.  相似文献   

17.
The optical absorption spectra of Rb2MnxCd1?xCl4 crystals are experimentally studied in the vicinity of a magnon sideband of the exciton band at a manganese content x ranging from 1.0 to 0.4. Additional absorption bands are observed with an increase in the magnetic structural disorder upon replacement of manganese ions by cadmium ions. An analysis of the evolution of the additional absorption bands in a magnetic field during the spin-flop phase transition and the change in the intensity with variations in the manganese content x demonstrates that these bands are associated with the excitation of the exchange-coupled pairs of manganese ions located in different environments in a plane square lattice. The phase boundary between the antiferromagnetic and spin-flop phases is constructed using the results of optical measurements. The manganese content corresponding to the magnetic percolation point is evaluated.  相似文献   

18.
Xiqu Chen  Jun Dai 《Optik》2010,121(16):1529-1533
An optical switch is fabricated by using micromachining technology, which is based on thin nanocrystalline vanadium oxide (VOx) film, and it consists of four layers: a silicon (Si) substrate layer, a VOx layer, a Si3N4 buffer layer, and an aurum (Au) electrode layer. By applying a switching power supply to a pair of the Au electrodes, the optical switch is controlled to exhibit from an “on” state with semi-conducting phase to an “off” state with metallic phase. The optical switch performance is investigated, and testing results show that its extinction ratio is about 14 dB, its switching response time can achieve about 1.5 ms, and the power dissipation required for stimulating switching to work can be below about 15 mW at least, which is lower than the power dissipation of conventional optical switches based on microstructure thin vanadium dioxide (VO2) films. This kind of optical switch is potential to be applied as optical switch for optical communication.  相似文献   

19.
The cooling of Pb1?x BaxSc0.5Nb0.5O3 solid solutions with x≤0.04 leads to a spontaneous transition from a relaxor to a macrodomain ferroelectric state, accompanied by anomalous variation of the dielectric and optical properties of the material. As the barium content in the system increases, the relaxor state becomes more stable and eventually “freezes” at x≈0.05. The crystals with x=0.06 exhibited the appearance of a macrodomain ferroelectric phase induced both by an external electric field with a strength of 1.5 kV/cm and by an internal electric field formed in the course of dielectric aging.  相似文献   

20.
We measured reflectivity spectra of polycrystalline Mg1−xB2 samples, which show a metal-insulator transition with x. After performing the Kramers-Kronig analysis, the obtained optical conductivity spectra σ(ω) of MgB2 show a narrow Drude peak in the far-infrared region and a broad peak in the mid-infrared region. As x increases, the spectral weight of the Drude peak is strongly suppressed and that of the broad peak becomes enhanced a little. The existence of the broad mid-infrared peak in the insulating sample suggests that this peak might not be related to the free carriers in MgB2. In the far-infrared region, we also observe that the low energy dielectric constant of Mg1−xB2 diverges near the metal-insulator phase boundary (i.e. x=0.08). This result implies the possibility of a phase separation and a percolative metal-insulator transition in Mg1−xB2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号