首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
Methyl bacteriopyropheophorbide-a derivatives having a series of substituents at the C3 position were prepared and their optical properties were compared with the corresponding chlorin analogues. Two kinds of oxidation reaction (C3-vinyl --> formyl --> carboxy group) were found to be applicable with a little alteration of the free-base bacteriochlorin macrocycles. The Qx and Qy electronic absorption peak positions of synthetic bacteriochlorins in CH2Cl2 were affected by the C3 substituents and found to be more sensitive than those of the chlorins. The observed Qx/Qy peaks in their monomeric states were shifted to a longer wavelength in the order of 1-hydroxyethyl < hydroxymethyl < acetoxymethyl < vinyl < acetyl < carboxy < formyl < 2,2-dicyanoethynyl group. Zinc complex with the C3-hydroxymethyl group formed self-aggregates in a nonpolar organic solvent, which showed the largest red-shift of the Qy band (2380 cm(-1), 726 nm in THF to 878 nm in 1% THF-cyclohexane) among those of the synthetic self-aggregative (bacterio)chlorins examined.  相似文献   

2.
The Qy absorption band of two chlorophyll derivatives, zinc chlorin e6 (ZnCe6) and zinc pheophorbide a (ZnPheida), in aqueous solution is bathochromically shifted on addition of quinones, e.g., 1,4-benzoquinone (BQ), with a corresponding shift of the fluorescence band. This is due to a complex formation of zinc chlorins induced by BQs and subsequent rearrangement. The time-resolved absorption spectra after laser pulse excitation show triplet quenching of the pigments by BQ and other quinones via electron transfer. The effects of electron transfer to noncovalently bound BQs were also studied with de novo synthesized peptides, into which ZnCe6 and ZnPheida were incorporated as model systems for the primary steps of photosynthetic reaction centers. Whereas the photophysical properties are similar to those of the unbound zinc chlorins, no BQ-mediated complex formation was observed.  相似文献   

3.
Chlorophyll a and chlorophyll b exhibit distinct spectra yet differ only in the nature of a single substituent (7-methyl versus 7-formyl, respectively). Two complementary approaches have been developed for the synthesis of 7-substituted chlorins. The first approach is a de novo route wherein 2,9-dibromo-5-p-tolyldipyrromethane (Eastern half) and 9-formyl-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (Western half) undergo acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The resulting zinc chlorin is sterically uncongested and bears (1) a geminal dimethyl group in the reduced, pyrroline ring, (2) a bromo substituent at the 7-position, and (3) a p-tolyl group at the 10-position. The second approach entails regioselective 7-bromination of a 10,15-diarylchlorin that lacks a substituent at the 5-position. In an extension of this latter approach, a 5,15-diarylchlorin that lacks a substituent at the 10-position undergoes regioselective bromination at the 8-position. The introduction of a TIPS-ethynyl, acetyl, or formyl group at the 7-position was achieved using Pd-catalyzed reactions with the corresponding 7-bromochlorin. In the 10-p-tolyl-substituted zinc chlorins, the series of substituents (7-TIPS-ethynyl, 7-acetyl, 7-formyl) progressively causes (1) a bathochromic shift in the absorption maximum of the B band (405 to 426 nm) and (2) a hypsochromic shift in the position of the Qy band (605 to 598 nm). The trends mirror those for chlorophyll b versus chlorophyll a but are of lesser magnitude. Taken together, the facile access to chlorins that bear auxochromes at the 7-position enables wavelength tunability and provides the foundation for fundamental spectroscopic studies.  相似文献   

4.
A chlorophyll analog forming self-assembled monolayers (SAMs) on a gold surface was synthesized for the first time. 13(2)-(Demethoxycarbonyl)pheophorbide-a, which was converted from naturally occurring chlorophyll-a, was condensed with 2-hydroxyethyl disulfide to give a chlorin dyad linked by a disulfide bond. The chlorin analog was spontaneously immobilized on a gold substrate by soaking in an acetone solution of the dyad for 24 h. The resulting gold plate exhibited a visible absorption spectrum with about 420- and 675-nm maxima as the Soret and Qy peaks, respectively, indicating that chlorin pi-conjugates were modified on the gold substrate through Au-S bonding. Both visible absorption and fluorescence emission bands of the chlorin chromophores on the gold substrate were red-shifted compared with those of the synthesized chlorin dyad in a homogeneous acetone solution. The measured absorbance at the Soret maximum suggests that the chlorin chromophores on the gold plate were densely packed on a gold surface to form a SAM. Cathodic photocurrents were generated from SAMs of the chlorins on a gold substrate with irradiation of visible-lights above 400 nm. Photoinduced electron transfer from chlorins on the gold substrate to oxygen molecules in an electrolyte solution were attributed to the cathodic photocurrent generation.  相似文献   

5.
Abstract— A comparison of the spectra of in vitro (3-hydroxymethyl-131-oxometallochlorin) and in vivo chlorosomal (bacterio-chlorophyll- c ) aggregates suggests a similar supramolecular structure for the artificial oligomers and the bacte-riochlorophyll- c aggregates in the extramembranous antenna complexes (chlorosomes) of green photosynthetic bacteria. Synthetic zinc and magnesium chlorins have been found to aggregate in 1 % (vol/vol) tetrahydrofuran and hexane solutions and in thin films to form oligomers with the Qy absorption bands shifted to longer wavelengths by about 1900 (Zn chlorins) and 2100 cm−1 (Mg) relative to the corresponding monomer bands. Visible absorption and circular dichroism spectra of various zinc chlorins establish that a central metal, a 31-hydroxy and a 131-keto group are functional prerequisites for the aggregation. Vibrational bands measured by IR spectroscopy of solid films reveal two characteristic structural features of the oligomers: (1) a five-coordinated metallochlorin macrocycle with an axial ligand (bands at 1500-1630 cm−1), and (2) a hydrogen bond between the keto oxygen of one chlorin and the hydroxy group of a second chlorin, the oxygen of which is chelated to the metal atom of a third molecule, i.e . C=O…H-O…M (=Zn or Mg).  相似文献   

6.
The high resolution, single site emission and absorption spectra of palladium chlorin (PdC) in n-octane matrixes at 7K are reported. The emission and Q and Soret band absorption regions were investigated. The vibrational frequencies of the ground and the lowest energy pipi* excited states were determined from luminescence and excitation spectra, respectively. The emission from PdC was entirely phosphorescence. The emission and Qy region spectra of the complex are similar, having intense, narrow origin bands followed by relatively weak but orderly vibrational structure. The Qx region of this metal chlorin does not have a clear origin and exhibits complex vibrational structure which increases in intensity going to higher energy. In the Soret region of PdC there is only a single intense, broad band.  相似文献   

7.
A simple method has been developed for metalation of porphyrinic compounds under homogeneous conditions at room temperature using a stable ethereal solution of MgI(2) and N,N-diisopropylethylamine. A previously developed heterogeneous procedure employs a mixture of a magnesium halide and a nonnucleophilic amine in a noncoordinating solvent at room temperature. The scope of the heterogeneous and homogeneous magnesium insertion procedures has been investigated across a family of 19 porphyrinic compounds, including synthetic porphyrins, synthetic or naturally occurring chlorins, and organic-soluble phthalocyanines. The rate of magnesium insertion increased in the series phthalocyanines < chlorins < porphyrins, which parallels the basicity of the ligands. Though phthalocyanines have the smallest core size, the magnesium phthalocyanines were far more stable than magnesium porphyrins to acid-induced demetalation. The heterogeneous method is broadly applicable to porphyrins, chlorins, and phthalocyanines. The homogeneous method is generally slower than the heterogeneous method, though both afford rapid metalation of most porphyrins, including electron-deficient, peripherally coordinating, or facially encumbered meso-substituted tetraarylporphyrins, and the beta-substituted octaethylporphyrin. Chlorin e(6) trimethyl ester and methyl pyropheophorbide a were metalated cleanly under homogeneous but not heterogeneous conditions, while pheophytin a failed with both methods. The homogeneous method failed altogether with phthalocyanines. Several methods in magnesium chemistry have been developed that augment these procedures, including a mild synthesis of tetraphenylchlorin and a streamlined separation of porphyrin, chlorin, and bacteriochlorins based on selective formation of the magnesium chelates. Collectively, these methods should broaden the scope of model systems based on magnesium chelates of porphyrinic compounds.  相似文献   

8.
One- and two-color, three-pulse photon echo peak shift spectroscopy (1C and 2C3PEPS) was used to estimate the electronic coupling between the accessory bacteriochlorophyll (B) and the bacteriopheophytin (H) in the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides as approximately 170 +/- 30 cm-1. This is the first direct experimental determination of this parameter; it is within the range of values found in previously published calculations. The 1C3PEPS signal of the Qy band of the bacteriochlorophyll B shows that it is weakly coupled to nuclear motions of the bath, whereas the 1C3PEPS signal of the Qy band of the bacteriopheophytin, H, shows that it is more strongly coupled to the bath, but has minimal inhomogeneous broadening. Our simulations capture the major features of the data with the theoretical framework developed in our group to separately calculate the response functions and population dynamics.  相似文献   

9.
Chlorins provide the basis for plant photosynthesis, but synthetic model systems have generally employed porphyrins as surrogates due to the unavailability of suitable chlorin building blocks. We have adapted a route pioneered by Battersby to gain access to chlorins that bear two meso substituents, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and beta substituents. The synthesis involves convergent joining of an Eastern half and a Western half. A 3,3-dimethyl-2,3-dihydrodipyrrin (Western half) was synthesized in four steps from pyrrole-2-carboxaldehyde. A bromodipyrromethane carbinol (Eastern half) was prepared by sequential acylation and bromination of a 5-substituted dipyrromethane followed by reduction. Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The latter reaction has heretofore been performed with copper templates. Investigation of conditions for this multistep process led to copper-free conditions (zinc acetate, AgIO(3), and piperidine in toluene at 80 degrees C for 2 h). The zinc chlorin was obtained in yields of approximately 10% and could be easily demetalated to give the corresponding free base chlorin. The synthetic process is compatible with a range of meso substituents (p-tolyl, mesityl, pentafluorophenyl, 4-[2-(trimethylsilyl)ethynyl]phenyl, 4-iodophenyl). Altogether four free base and four zinc chlorins have been prepared. The chlorins exhibit typical absorption spectra, fluorescence spectra, and fluorescence quantum yields. The ease of synthetic access, presence of appropriate substituents, and characteristic spectral features make these types of chlorins well suited for incorporation in synthetic model systems.  相似文献   

10.
Chlorins bearing synthetic handles at specific sites about the perimeter of the macrocycle constitute valuable building blocks. We previously developed methodology for preparing meso-substituted chlorin building blocks and now present methodology for preparing several complementary beta-substituted chlorin building blocks. The chlorins bear one or two beta substituents, one meso substituent, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and beta substituents. The synthesis involves convergent joining of an Eastern half and a Western half. New routes have been developed to two beta-substituted bromo-dipyrromethane monocarbinols (Eastern halves). A new beta-substituted Western half was prepared following the method for preparing an unsubstituted Western half (3,3-dimethyl-2,3-dihydrodipyrrin). Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. beta-Substituted chlorins have been prepared in 18-24% yield bearing a 4-iodophenyl group at the 8-position, a 4-iodophenyl group or a 4-[2-(trimethylsilyl)ethynyl]phenyl group at the 12-position, and a 4-iodophenyl group and a 4-[2-(trimethylsilyl)ethynyl]phenyl group at diametrically opposed beta-positions (2, 12). The latter building block makes possible the stepwise construction of linear multi-chlorin architectures. The chlorins exhibit typical absorption and fluorescence spectra. A systematic shift in the absorption maximum (637-655 nm for the free base chlorins, 606-628 nm for the zinc chlorins) and intensity of the chlorin Q(y)() band (epsilon up to 79 000 M(-)(1) cm(-)(1)) is observed depending on the location of the substituents. The characteristic spectral features and location of substituents in defined positions make these chlorins well suited for a variety of applications in biomimetic and materials chemistry.  相似文献   

11.
The use of chlorins as photosensitizers or fluorophores in a range of biological applications requires facile provisions for imparting high water solubility. Two free base chlorins have been prepared wherein each chlorin bears a geminal dimethyl group in the reduced ring and a water-solubilizing unit at the chlorin 10-position. In one design (FbC1-PO3H2), the water-solubilizing unit is a 1,5-diphosphonopent-3-yl ("swallowtail") unit, which has previously been used to good effect with porphyrins. In the other design (FbC2-PO3H2), the water-solubilizing unit is a 2,6-bis(phosphonomethoxy)phenyl unit. Two complementary routes were developed for preparing FbC2-PO3H2 that entail introduction of the protected phosphonate moieties either in the Eastern-half precursor to the chlorin or by derivatization of an intact chlorin. Water-solubilization is achieved in the last step of each synthesis upon removal of the phosphonate protecting groups. The chlorins FbC1-PO3H2 and FbC2-PO3H2 are highly water-soluble (>10 mM) as shown by 1H NMR spectroscopy (D2O) and UV-vis absorption spectroscopy. The photophysical properties of the water-soluble chlorins in phosphate-buffered saline solution (pH 7.4) at room temperature were investigated using static and time-resolved absorption and fluorescence spectroscopic techniques. Each chlorin exhibits dominant absorption bands in the blue and the red region (lambda = 398, 626 nm), a modest fluorescence yield (Phi f approximately 0.11), a long singlet excited-state lifetime (tau = 7.5 ns), and a high yield of intersystem crossing to give the triplet state (Phi isc = 0.9). The properties of the water-soluble chlorins in aqueous media are comparable to those of hydrophobic chlorins in toluene. The high aqueous solubility combined with the attractive photophysical properties make these compounds suitable for a wide range of biomedical applications.  相似文献   

12.
A series of zinc 3(1)-hydroxymethyl chlorins 10 a-e and zinc 3(1)-hydroxyethyl chlorins 17 with varied structural features were synthesized by modifying naturally occurring chlorophyll a. Solvent-, temperature-, and concentration-dependent UV/Vis and CD spectroscopic methods as well as microscopic investigations were performed to explore the importance of particular functional groups and steric effects on the self-assembly behavior of these zinc chlorins. Semisynthetic zinc chlorins 10 a-e possess the three functional units relevant for self-assembly found in their natural bacteriochlorophyll (BChl) counterparts, namely, the 3(1)-OH group, a central metal ion, and the 13(1) C==O moiety along the Q(y) axis, and they contain various 17(2)-substituents. Depending on whether the zinc chlorins have 17(2)-hydrophobic or hydrophilic side chains, they self-assemble in nonpolar organic solvents or in aqueous media, respectively. Zinc chlorins possessing at least two long side chains provide soluble self-aggregates that are stable in solution for a prolonged time, thus facilitating elucidation of their properties by optical spectroscopy. The morphology of the zinc chlorin aggregates was elucidated by atomic force microscopy (AFM) studies, revealing well-defined nanoscale rod structures for zinc chlorin 10 b with a height of about 6 nm. It is worth noting that this size is in good accordance with a tubular arrangement of the dyes similar to that observed in their natural BChl counterparts in the light-harvesting chlorosomes of green bacteria. Furthermore, for the epimeric 3(1)-hydroxyethyl zinc chlorins 17 with hydrophobic side chains, the influence of the chirality center at the 3(1)-position on the aggregation behavior was studied in detail by UV/Vis and CD spectroscopy. Unlike zinc chlorins 10, the 3(1)-hydroxyethyl zinc chlorins 17 formed only small oligomers and not higher rod aggregate structures, which can be attributed to the steric effect imposed by the additional methyl group at the 3(1)-position.  相似文献   

13.
The proton NMR spectra of tetraphenylporphyrin, octaethylporphyrin and the analogous chlorins (7,8-dihydroporphyrins) are presented, and the chemical shift changes on chlorin formation are interpreted using a ring current model. In these compounds a general 10% reduction in the ring current occurs upon chlorin formation. Similar comparison of the chemical shifts of the corresponding dications and also of the protonated form of 2-vinylphylloerythrin methyl ester with the corresponding chlorin, methyl pyropheophorbide-a, shows that chlorin formation now has a much larger effect on the ring current, this reflecting the increased steric effects within the macrocycle which occur upon protonation. Variable temperature studies on the porphyrins and chlorins examined show clearly the effect of NH exchange processes and, in particular, novel intermolecular exchange processes with trifluoroacetic acid in the protonated species are recorded.  相似文献   

14.
Zinc complex of pyropheophorbide‐b, a derivative of chlorophyll‐b, was covalently dimerized through ethylene glycol diester. The synthetic homo‐dyad was axially ligated with two methanol molecules from the β‐face and both the diastereomerically coordinating methanol species were hydrogen bonded with the keto‐carbonyl groups of the neighboring chlorin in a complex. The resulting folded conformer in a solution was confirmed by visible, 1H NMR and IR spectra. All the synthetic zinc chlorin homo‐ and hetero‐dyads consisting of pyropheophorbides‐a, b and/or d took the above methanol‐locked and ππ stacked supramolecules in 1% (v/v) methanol and benzene to give redmost (Qy) electronic absorption band(s) at longer wavelengths than those of the corresponding monomeric chlorin composites. The other zinc chlorin and bacteriochlorin homo‐dyads completely formed similar folded conformers in the same solution, while zinc inverse chlorin and porphyrin homo‐dyads partially took such supramolecules. The J‐type aggregation to folded conformers and the redshift values of composite Qy bands were dependent on the electronic and steric factors of porphyrinoid moieties in dyads.  相似文献   

15.
The optical absorption spectra and redox properties are presented for 24 synthetic zinc chlorins and 18 free base analogs bearing a variety of 3,13 (beta) and 5,10,15 (meso) substituents. Results are also given for a zinc and free base oxophorbine, which contain the keto-bearing isocyclic ring present in the natural photosynthetic pigments such as chlorophyll a. Density functional theory calculations were carried out to probe the effects of the types and positions of substituents on the characteristics (energies, electron distributions) of the frontier molecular orbitals. A general finding is that the 3,13 positions are more sensitive to the effects of auxochromes than the 5,10,15 positions. The auxochromes investigated (acetyl>ethynyl>vinyl>aryl) cause a significant redshift and intensification of the Qy band upon placement at the 3,13 positions, whereas groups at the 5,10,15 positions result in much smaller redshifts that are accompanied by a decrease in relative Qy intensity. In addition, the substituent-induced shifts in first oxidation and reduction potentials faithfully track the energies of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), respectively. The calculations show that the LUMO is shifted more by substituents than the HOMO, which derives from the differences in the electron densities of the two orbitals at the substituent sites. The trends in the substituent-induced effects on the wavelengths and relative intensities of the major features (By, Bx, Qx, Qy) in the near-UV to near-IR absorption bands are well accounted for using Gouterman's four-orbital model, which incorporates the effects of the substituents on the HOMO-1 and LUMO+1 in addition to the HOMO and LUMO. Collectively, the results and analysis presented herein and in the companion paper provide insights into the effects of substituents on the optical absorption, redox and other photophysical properties of the chlorins. These insights form a framework that underpins the rational design of chlorins for applications encompassing photomedicine and solar-energy conversion.  相似文献   

16.
在四氢呋喃中加入金属卟吩、 强碱(无水氢化钠)和金属盐MXn(M=Cu, Ni, Pd), 合成了细菌卟吩的5种过渡金属配合物, 该方法减少了反应时间, 提高了反应产率. 通过紫外-可见光谱、 核磁共振氢谱、 质谱等方法对所合成的化合物进行了表征, 并研究了其光学性质. 结果表明, 细菌卟吩在近红外区有明显的吸收峰, 且具有较高的强度, 相比于细菌卟吩配体, 金属配合物吸收光谱中的Qx和Qy带均发生了明显的红移. 细菌卟吩配体与锌配合物具有发光性质, 为Qy(0,0)荧光, 而铜、 镍等金属配合物并没有检测到荧光峰.  相似文献   

17.
Radical reactions of a C3-vinylated chlorophyll derivative, methyl pyropheophorbide-a, which were induced by thiols and the conventional initiator azobisisobutyronitrile (AIBN) were examined in vitro for the first time. Thiyl radicals attacked regioselectively at the sole C3-vinyl group, and the anti-Markovnikov sulfanyl adducts were obtained as major products. The other peripheral substituents, as well as the chlorin macrocycle, remained intact. The AIBN-induced radical reaction competed with co-oxidation that afforded the C3-formyl chlorin. This method can open new routes to derivatization of vinyl chlorins.  相似文献   

18.
The oxidation of bacteriopyropheophorbide with ferric chloride hexahydrate or its anhydrous form produced the ring-D oxidized (ring-B reduced) chlorin in >95% yield. Replacing the five-member isocyclic ring in bacteriopyropheophorbide- a with a fused six-member N-butylimide ring system made no difference in regioselective oxidation, and the corresponding ring-B reduced chlorin was isolated in almost quantitative yield. When the oxidant was replaced by 2,3-dichloro-5,6-dicyano-p-benzoquinone, which is frequently used at the oxidizing stage of the porphyrin synthesis, the ring-B oxidized (ring-D reduced) chlorins were obtained. With both ring-B reduced and ring-D reduced chlorins in hand, their photophysical and electrochemical properties were examined and compared for the first time. The ring-B reduced chlorine 20, with a fused six-member N-butylimide ring, exhibits the most red-shifted absorption band (at lambda(max) = 746 nm), the lowest fluorescence quantum yield (4.5%), and the largest quantum yield of singlet oxygen formation (67%) among the reduced ring-B and ring-D chlorins investigated in this study. Measurements of the one-electron oxidation and reduction potentials show that compound 20 is also the easiest to oxidize among the examined compounds and the third easiest to reduce. In addition, the 1.62 eV HOMO-LUMO gap of 20 is the smallest of the examined compounds, and this agrees with values calculated using the DFT method. Spectroelectrochemical measurements afforded UV-visible absorption spectra for both the radical cations and radical anions of the examined chlorins. The ring-B reduced compound 20, with a fused six-member N-butylimide ring, is regarded as the most promising candidate in this study for photodynamic therapy because it has the longest wavelength absorption and the largest quantum yield of singlet oxygen formation among the compounds investigated.  相似文献   

19.
Regioselective reactions of methyl pyropheophorbide a (MPPa) with formaldehyde based on hydroxymethylation have been studied. It was found that MPPa can react regioselectively with formaldehyde under different conditions to produce a series of 3-dioxane, 12-, 132- or 20-hydroxymethyl and 12-/132-alkenyl-substituted chlorins via Prins reaction, Blanc chloromethylation and aldol reaction, respectively. The first examples of direct C–C bond formation at 12-position of chlorophyll derivatives were also reported to give a series of 12-vinyl-substituted chlorins. These chlorins showed extend Qy absorptions and efficient singlet oxygen generation property, indicating their potential as photosensitizers for application in photodynamic therapy.  相似文献   

20.
Understanding the effects of substituents on the spectra of chlorins is essential for a wide variety of applications. Recent developments in synthetic methodology have made possible systematic studies of the properties of the chlorin macrocycle as a function of diverse types and patterns of substituents. In this paper, the spectral, vibrational and excited-state decay characteristics are examined for a set of synthetic chlorins. The chlorins bear substituents at the 5,10,15 (meso) positions or the 3,13 (beta) positions (plus 10-mesityl in a series of compounds) and include 24 zinc chlorins, 18 free base (Fb) analogs and one Fb or zinc oxophorbine. The oxophorbine contains the keto-bearing isocyclic ring present in the natural photosynthetic pigments (e.g. chlorophyll a). The substituents cause no significant perturbation to the structure of the chlorin macrocycle, as evidenced by the vibrational properties investigated using resonance Raman spectroscopy. In contrast, the fluorescence properties are significantly altered due to the electronic effects of substituents. For example, the fluorescence wavelength maximum, quantum yield and lifetime for a zinc chlorin bearing 3,13-diacetyl and 10-mesityl groups (662 nm, 0.28, 6.0 ns) differ substantially from those of the parent unsubstituted chlorin (602 nm, 0.062, 1.7 ns). Each of these properties of the lowest singlet excited state can be progressively stepped between these two extremes by incorporating different substituents. These perturbations are associated with significant changes in the rate constants of the decay pathways of the lowest excited singlet state. In this regard, the zinc chlorins with the red-most fluorescence also have the greatest radiative decay rate constant and are expected to have the fastest nonradiative internal conversion to the ground state. Nonetheless, these complexes have the longest singlet excited-state lifetime. The Fb chlorins bearing the same substituents exhibit similar fluorescence properties. Such combinations of factors render the chlorins suitable for a range of applications that require tunable coverage of the solar spectrum, long-lived excited states and red-region fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号