首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As one of near-infrared (NIR) fluorescent (FL) nanoprobes, gold nanoclusters (Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size (<1.5 nm). Herein, the well-defined gold clusters nanoassembly (Au CNA) was synthesized by the selfassembly of Au NCs based on protein cross-linking approach. The as-prepared Au CNA demonstrated highly effective cellular uptake and precise tumor targeting compared to that of Au NCs. Moreover, with the irradiation of 660 nm laser, Au CNA generated largely reactive oxygen species (ROS) for photodynamic therapy (PDT). In vitro and in vivo PDT revealed that Au CNA exhibited largely cell death and significantly tumor removal at a low power density of 0.2 W/cm2. It could be speculated that the laser-excited Au CNA produced photon energy, which further obtained electron from oxygen to generate radical species. Therefore, Au CNA as a photosensitizer could realize NIR FL imaging and NIR laser induced PDT.  相似文献   

2.
In situ generated fluorescent gold nanoclusters (Au‐NCs) are used for bio‐imaging of three human cancer cells, namely, lung (A549), breast (MCF7), and colon (HCT116), by confocal microscopy. The amount of Au‐NCs in non‐cancer cells (WI38 and MCF10A) is 20–40 times less than those in the corresponding cancer cells. The presence of a larger amount of glutathione (GSH) capped Au‐NCs in the cancer cell is ascribed to a higher glutathione level in cancer cells. The Au‐NCs exhibit fluorescence maxima at 490–530 nm inside the cancer cells. The fluorescence maxima and matrix‐assisted laser desorption ionization (MALDI) mass spectrometry suggest that the fluorescent Au‐NCs consist of GSH capped clusters with a core structure (Au8‐13). Time‐resolved confocal microscopy indicates a nanosecond (1–3 ns) lifetime of the Au‐NCs inside the cells. This rules out the formation of aggregated Au–thiolate complexes, which typically exhibit microsecond (≈1000 ns) lifetimes. Fluorescence correlation spectroscopy (FCS) in live cells indicates that the size of the Au‐NCs is ≈1–2 nm. For in situ generation, we used a conjugate consisting of a room‐temperature ionic liquid (RTIL, [pmim][Br]) and HAuCl4. Cytotoxicity studies indicate that the conjugate, [pmim][AuCl4], is non‐toxic for both cancer and non‐cancer cells.  相似文献   

3.
Cytochrome c‐capped fluorescent gold nanoclusters (Au‐NCs) are used for imaging of live lung and breast cells. Delivery of cytochrome c inside the cells is confirmed by covalently attaching a fluorophore (Alexa Fluor 594) to cytochrome c‐capped Au‐NCs and observing fluorescence from Alexa 594 inside the cell. Mass spectrometry studies suggest that in bulk water, addition of glutathione (GSH) to cytochrome c‐capped Au‐NCs results in the formation of glutathione‐capped Au‐NCs and free apo‐cytochrome c. Thus glutathione displaces cytochrome c as a capping agent. Using confocal microscopy, the emission spectra and decay of Au‐NCs are measured in live cells. From the position of the emission maximum it is shown that the Au‐NCs exist as Au8 in bulk water and as Au13 inside the cells. Fluorescence resonance energy transfer from cytochrome c–Au‐NC (donor) to Mitotracker Orange (acceptor) indicates that the Au‐NCs localise in the mitochondria of live cells.  相似文献   

4.
结合磁共振成像(MRI)和荧光成像技术,以钆离子(Gd3+)、量子点及精氨酸(R)-甘氨酸(G)-天冬氨酸(D)(RGD)多肽等为功能单元,采用纳米载体组装技术构建了MRI弛豫率/荧光效率高和靶向性强的Gd3+与RGD共修饰的量子点双模态纳米探针(QDs@Gd3+-RGD),并将其用于胰腺癌细胞的双模态成像.实验结果表明,QDs@Gd3+-RGD双模态纳米探针具有较高的弛豫率,且能对胰腺癌patu8988细胞进行荧光和T1-weighted MR成像.  相似文献   

5.
A method for in situ preparation of fluorescent gold nanoclusters(Au NCs) with bovine serum albumin/montmorillonite composite powder(Au NC-BSA/MMT) was developed, and the products were used to detect latent fingermarks. In this work, Au NCs were "grown" both inside and on the surface of BSA/MMT clay using one-step reduction of HAu Cl4 by BSA. The as-prepared Au NC-BSA/MMT nanocomposites emit intensive red fluorescence under the excitation of UV-visible light and show stable chemical features and low toxicity. The obtained fluorescent powders were characterized by UV-visible absorption spectroscopy,fluorescence spectroscopy, infrared spectroscopy, transmission electron microscopy/high-resolution transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction to depict their sizes, structural information and optical features. Given their environmentally friendly preparation, simple operation, low cost, efficient UVvisible radiation-dependent photoluminescence and good affinity with finger residues, the in situ synthesized Au NC-BSA/MMT nanocomposite powders were used as an alternative fluorescent developing reagent for developing latent fingermarks deposited on various object surfaces(such as glass, aluminum foil, painted metal, plastic products and weighing papers) for individual identification. As results, the developed fingermarks with clear patterns and satisfactory level-2(minutiae points) and level-3(sweat pores) ridge details were obtained. Notably, treated prints could be excited by red light and emitted near infrared fluorescence, which was beneficial to avoid background interference and reduce the damage caused by UV light. With the advantages of the simple preparation process and good enhancement performance for latent fingermarks, the proposed method might be used in the preparation of various fluorescent probes for detecting trace evidence in forensic sciences.  相似文献   

6.
In this study, a novel Au nanocluster (NC)-based fluorescent sensor has been designed for near-infrared (NIR) and turn-on sensing of glutathione (GSH) in both living cells and human blood samples. The large Stokes-shifted (140 nm) fluorescent Au NCs with NIR emission and long-wavelength excitation have been rapidly synthesized for 2 h by means of a microwave-assisted method in aqueous solution. The addition of Hg(II) leads to an almost complete emission quenching (98%) of Au NCs because of the interaction of Hg(II) and Au(I) on the surface of Au NCs. After introducing GSH to the Au NC-Hg(II) system, a more than 20 times fluorescent enhancement is obtained because of the preferable affinity of GSH with Hg(II). Under optimum conditions, the fluorescence recovery is linearly proportional to the concentration of GSH between 0.04 and 16.0 μM and the detection limit is as low as 7.0 nM. This Au NC-based sensor with high sensitivity and low spectral interference has been proven to facilitate biosensing applications.  相似文献   

7.
Lin Z  Luo F  Dong T  Zheng L  Wang Y  Chi Y  Chen G 《The Analyst》2012,137(10):2394-2399
Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.  相似文献   

8.
Jie Xu  Li Shang 《中国化学快报》2018,29(10):1436-1444
Recent advances in the development of near-infrared fluorescent metal nanoclusters for bioimaging applications have been thoroughly overviewed.  相似文献   

9.
金纳米簇由几个到几十个金原子组成,具有尺寸小、荧光性能好、无毒等优点,被广泛应用于生物医学领域。本文介绍了包括模板法,刻蚀法,可逆相转移法和动力学控制法等金纳米簇的主要制备方法,并综述了金纳米簇在生物医学上的主要应用,包括生物检测、荧光成像和药物控释。  相似文献   

10.
Y He  X Wang  J Zhu  S Zhong  G Song 《The Analyst》2012,137(17):4005-4009
In this work, Ni(2+)-modified gold nanoclusters were fabricated for fluorescence turn-on detection of histidine. The fluorescence of Au NCs was first quenched by Ni(2+). Then, the addition of histidine can restore the fluorescence of Au NCs by binding with Ni(2+) and removing it from the surface of the Au NCs. This architecture ensured non-toxic, cost-effective, label-free and sensitive detection of histidine. The developed Au NCs-based fluorescent sensor offered high selectivity for histidine over other amino acids. The relative standard deviation (RSD) for eleven replicate detections was 2.7%. The detection limit for histidine is 30 nM. The recovery of spiked histidine in human urine samples ranges from 95 to 104%.  相似文献   

11.
The assembly of two-component nanocrystals (NCs) such as metals, magnets, and semiconductors into binary nanocrystal superlattices (BNSLs) provides a fabrication route to novel classes of materials. BNSLs with certain structures can exhibit the combined and collective properties of their building blocks and are widespread in the fields of electronics and magnetic devices. As most studies have focused on combined two-component NCs of different sizes for self-assembling BNSLs, there are a few studies on single-component NCs of different sizes for the construction of BNSLs; this is especially true for Au NCs. Noble metallic Au NCs are an excellent candidate material because of their exceptional chemical stability, catalytic activity, process ability, and metallic nature; these characteristics provide them unique size-dependent optical and electronic properties as well as a wide variety of applications in sensing, imaging, electronic devices, medical diagnostics, and cancer therapeutics owing to their strong interactions with external electromagnetic fields. Therefore, it is important to develop a simple and efficient procedure to build BNSLs with different sizes of Au NCs. In our study, we synthesized monodispersed (size distribution < 10%) 6.0, 7.3, and 9.6 nm Au NCs using dodecanethiol-stabilized 3.7 nm Au NCs as seeds through a seed-growth method in oleylamine. The obtained Au NCs exhibited morphology and nanocrystallinity (single-domain and polycrystalline) similar to those of Au seeds. As the size of Au NCs increased from 3.7 to 6.0, 7.3, and 9.6 nm, the surface plasmon resonance peaks narrowed and indicated a red shift. The oleylamine-functionalized 6.0, 7.3, and 9.6 nm Au NCs were mixed with 3.7 nm Au NCs at certain concentration ratios. Au BNSLs with AB2 (hexagonal AlB2 structure), AB13 (NaZn13 structure), and AB (cubic NaCl structure) type were obtained through the solvent evaporation method. The (001) plane of the AlB2-type structure, (001) plane of the NaZn13-type structure, and (100) plane of NaCl-type structure superlattices were observed through transmission electron microscopy (TEM). The effective particle size ratios (γ= Dsmall/Dlarge) serve as the critical determining factor in the formation of the BNSLs. The effective particle size of NCs is equal to the sum of the metal core diameter and twice the thicknesses of the surface ligand. In our study, the effective particle size Dsmall (Au seed) is 5.7 nm; the effective particle sizes Dlarge (6.0, 7.3, and 9.6 nm Au NCs) are 9.0, 10.3, and 12.6 nm, respectively. The effective particle size ratios γ were therefore calculated to be 0.63, 0.55, and 0.45, respectively. The relevant space filling principle predicted the stability of the AlB2, NaZn13, and NaCl-type structures in the range of 0.482 < γ < 0.624, 0.54 < γ < 0.625, and γ < 0.458, respectively; the experimental results adequately matched the relevant space filling principle. The investigation of such a single nanocomponent as a building block is noteworthy with regard to the structures and properties of BNSLs as well as the potential development of novel meta-materials.  相似文献   

12.
The fabrication of nanocrystals (NCs) composed of the cationic Au(I) complex was demonstrated by the reprecipitation method in which the colloidal solution of the NCs showed brilliant green phosphorescence with a quantum yield of 83% in n-hexane. Characterization of the prepared NCs was performed by transmission electron microscopy observation and elemental analysis with energy-dispersive X-ray spectroscopy. The obtained Au(I) NCs were particles of random shapes with a diameter of 200-400 nm. The selected-area electron diffraction and X-ray diffraction measurements showed the characteristic diffraction patterns attributable to the crystal structure of the bulk crystal of the Au(I) complex. A similar method was performed with a different counteranion, leading to a colloidal solution of the microcrystals (MCs) with brilliant yellow phosphorescence and a quantum yield of 26% in n-hexane. Luminescence patterning of the NCs and MCs was also achieved successfully by electrophoretic deposition onto an indium tin oxide (ITO)-coated glass substrate, resulting in characteristic luminescence patterns on the ITO substrates with relatively high photoluminescence quantum yields.  相似文献   

13.
《中国化学快报》2021,32(8):2390-2394
The fascinating luminescence properties of gold nanoclusters(AuNCs) have drawn considerable research interests,and been widely harnessed for a wide range of applications.However,a fundamental understanding towards ligand density's role in the luminescence properties of these ultrasmall AuNCs remains unclear yet.In this communication,through systematic investigation of surface chemistries of glutathione-protected Au NCs(GSH-Au NCs) with diffe rent density of GSH as well as other thiolates,it is discovered that the density of surface ligands can significantly regulate the luminescence properties of AuNCs.Fluorescence lifetime spectroscopy and X-ray photoelectron spectroscopy showed that AuNCs with a higher density of electron-rich ligands facilitate their luminescence generation.Moreover,differences in the surface coverage of AuNCs can also affect their interactions with foreign species,as illustrated by significantly different fluorescence quenching capability of GSH-AuNCs with different ligand density towards Hg~(2+).This study provides new insight into the intriguing luminescence properties of metal NCs,which is hoped to stimulate further research on the design of metal NCs with strong luminescence and sensitive/specific responses for promising optoelectronic,sensing and imaging applications.  相似文献   

14.
平均粒径为2–10 nm的聚合物稳定的Au纳米簇(NCs)表现出独特的催化性能。多个研究表明,影响聚合物稳定的Au NCs催化活性的主要因素为: Au NC尺寸的控制、聚合物的选择以及反应条件的优化。这是由于聚合物稳定的Au NCs在多个催化反应中表现出明显的尺寸效应,其催化活性也因所采用的聚合物和反应条件的不同而不同。为了阐明影响聚合物稳定的Au NCs催化活性的内在原因,众多研究者关注于聚合物稳定的Au NCs催化中的理论计算与实验的相互影响。本文主要总结了聚合物稳定的Au NCs中这种相互影响的研究进展。  相似文献   

15.
Gold nanoclusters (NCs) were electrodeposited on phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) electrode and characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, cyclic voltammetry and chronoamperometry. The nanosized Au deposits controlled by adjusting the deposition time represented a progressive nucleation and diffusion-controlled growth of separate three-dimensional islands on limited sites. Significant enhancement of electrochemical activity and reversibility towards ferricyanide oxidation reaction was observed after the deposition of Au NCs on ta-C:P film, implying ta-C:P/Au as a potential material for the application of electroanalysis.  相似文献   

16.
Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have excellent fluorescence properties for the detection of metal ions.The results showed that the copper ions(Cu~(2+)) and iron ions(Fe~(3+)) in the solution have obvious quenching effect on the fluorescence intensity of Au NCs.The detection range of Fe~(3+) was 0.8–4.5 mmol/L(R~2= 0.992) and 4.5–11.0 mmol/L(R~2= 0.997).And Cu~(2+) has a lower linear range(0.1–1.0 mmol/L,R2= 0.993).When EDTA was added into the reaction system,it was observed that the quenching effect of Cu~(2+) and Fe~(3+)on Au NCs showed different phenomenon.Then,the effect of metal ions on the fluorescence of Au NCs was investigated.The selective detection of Cu~(2+) was achieved by EDTA masking of Fe~(3+).In addition,we realized the metal ions detection application of Au NCs in the serum  相似文献   

17.
In addition to superior enzyme-mimicking abilities, nanozymes also have intrinsic physicochemical properties. Integrating the enzyme-like activities and tunable physicochemical properties into a single nanoparticle is a promising strategy for versatile nanozyme design and application. Herein, a composite nanozyme in which Au nanoparticles are encapsulated by Au nanoclusters (AuNP@AuNCs) is presented. By integrating the peroxidase-mimicking ability of fluorescent Au NCs with the glucose oxidase-like activity of Au NPs, the composite nanozyme realized cascade assay of glucose without the aid of external indicators. Compared to traditional multistep colorimetric methods, the analytical process was highly simplified by using the self-responsive nanozyme. This synthetic strategy provided valuable insights into exploring talented nanozymes for sensing diverse targets.  相似文献   

18.
In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag+ and Hg2+ by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag+ and Hg2+ over other metal ions, and relevant detection limit of Ag+ and Hg2+ is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag+ can be conveniently reusable for the detection of Hg2+ based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg2+–Ag+ interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag+ and Hg2+ detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring.  相似文献   

19.
In recent years, thiolate‐protected gold nanoclusters (or thiolated Au NCs) with a core size below 2 nm have emerged as a new class of multifunctional nanoparticles because of their unique molecular‐like properties and the potential to use these properties in many practical applications. A general synthesis of Au NCs may involve the use of a strong reducing agent (e.g., sodium borohydride (NaBH4)), which often leads to the formation of mix‐sized Au NCs if no delicate control is applied. To obtain atomically precise Au NCs, additional physical or chemical selection processes (e.g., high‐resolution separation or size‐focusing) are required, which are difficult to be scaled up or are limited to only thermodynamically stable products. By introducing a milder reducing agent – carbon monoxide (CO) – both stable and metastable thiolated Au NCs, including Au10–12, Au15, Au18, Au25, and Au29, can be synthesized in a one‐pot manner. In addition, CO reduction also enables the synthesis of a highly luminescent Au22(SG)18 NC. Furthermore, the intermediates of Au NC growth can be tracked in the CO‐reduction system due to the mild and readily stoppable nature of CO reduction. Therefore, the use of CO reduction may bring new flexibilities in designing synthetic strategies and understanding the growth mechanism of atomically precise Au NCs, which could contribute to a better design of functional Au NCs, further paving their way towards practical applications in various fields.  相似文献   

20.
张申  郭玉玉 《应用化学》2020,37(9):1069-1075
作为检测槲皮素的有效途径,在荧光法中如何通过简单的方法合成性能优良的荧光探针具有重要的意义。 本文以聚乙烯吡咯烷酮(PVP)为保护剂,抗坏血酸为还原剂,化学还原法合成PVP保护的分散性好、稳定性高、强荧光的铜纳米团簇(PVP-Cu NCs)。 样品表现出良好的水溶性,光稳定性和强离子稳定性。 通过紫外可见光谱(UV-Vis)、分子荧光光谱、透射电子显微镜(TEM)和X射线光电子能谱分析(XPS)对铜纳米团簇的光学性质和结构进行了分析。 结果表明:该铜纳米团簇的最大激发和发射波长分别为366和429 nm,平均粒径大小为2 nm。 基于槲皮素对该铜纳米团簇的猝灭作用,构建了一种可用于检测槲皮素的荧光传感器。 该传感体系检测槲皮素的线性范围为0.1~0.9 μmol/L和15~60 μmol/L,检测限为0.053 μmol/L(S/N=3)。 该传感器对槲皮素的检测具有很高的灵敏度和良好的选择性,可用于实际样品中槲皮素的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号