首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Products such as cosmetics, pharmaceuticals, and crude oil often exist as water-in-oil (W/O) emulsions during their processing or in final form. In many cases, their dispersed aqueous phase is encased in a crystal network and/or by interfacially-adsorbed (‘Pickering’) particles [paraffins, triacylglycerols, polymers, etc.] that promote emulsion kinetic stability by hindering droplet–droplet contact, coalescence and macroscopic phase separation. In processed foods, important questions remain regarding whether a continuous phase fat crystal network or Pickering crystal provides better stabilization. This review explores the following factors related to crystal-stabilized W/O emulsions: i) the key properties dictating fat crystal spatial distribution (at the interface or in the continuous phase); ii) how temperature and freeze–thaw emulsion destabilization are intimately linked with fat crystal spatial distribution, and; iii) why oil-soluble surfactant interactions with the continuous oil phase influence fat crystal wettability and emulsifier efficacy. It is shown that these parameters strongly govern W/O emulsion formation and stability.  相似文献   

2.
Factors influencing water-in-oil emulsion stability during freeze/thaw-cycling, namely interfacial crystallization vs. network crystallization and the sequence of crystallization events (i.e., dispersed vs. continuous phase or vice versa), are assessed. We show that destabilization is most apparent with a liquid-state emulsifier and a continuous oil phase that solidifies prior to the dispersed phase. Emulsions stable to F/T-cycling are obtained when the emulsifier crystallizes at the oil–water interface or in emulsions where the continuous phase crystallizes after the dispersed aqueous phase. The materials used are two food-grade oil-soluble emulsifiers – polyglycerol polyricinoleate (PGPR) and glycerol monostearin (GMS) and two continuous oil phases with differing crystallization temperatures – canola oil and coconut oil. Emulsion stability is assessed with pulsed field gradient NMR droplet size analysis, sedimentation, microscopy and differential scanning calorimetry. This study demonstrates the sequence of crystallization events and the physical state of the surfactant at the oil–water interface strongly impact the freeze–thaw stability of water-in-oil emulsions.  相似文献   

3.
We have studied polydimethylsiloxane (PDMS)-in-1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) Pickering emulsions stabilized by polystyrene microparticles with different surface chemistry. Surprisingly, in contrast to the consensus originating from oil/water Pickering emulsions in which the solid particles equilibrate at the oil-water droplet interfaces and provide effective stabilization, here the polystyrene microparticles treated with sulfate, aldehyde sulfate, or carboxylate dissociable groups mostly formed monolayer bridges among the oil droplets rather than residing at the oil-ionic liquid interfaces. The bridge formation inhibited individual droplet-droplet coalescence; however, due to low density and large volume (thus the buoyant effect), the aggregated oil droplets actually promoted oil/ionic liquid phase separation and distressed emulsion stability. Systems with binary heterogeneous polystyrene microparticles exhibited similar, even enhanced (in terms of surface chemistry dependence), bridging phenomenon in the PDMS-in-[BMIM][PF(6)] Pickering emulsions.  相似文献   

4.
The pace of development of edible Pickering emulsions has recently soared, as interest in their potential for texture modification, calorie reduction and bioactive compound encapsulation and delivery has risen. In the broadest sense, Pickering emulsions are defined as those stabilized by interfacially-adsorbed solid particles that retard and ideally prevent emulsion coalescence and phase separation. Numerous fat-based species have been explored for their propensity to stabilize edible emulsions, including triglyceride and surfactant-based crystals and solid lipid nanoparticles. This review explores three classes of fat-based Pickering stabilizers, and proposes a microstructure-based nomenclature to delineate them: Type I (surfactant-mediated interfacial crystallization), Type II (interfacially-adsorbed nano- or microparticles) and Type III (shear-crystallized droplet encapsulation matrices). Far from simply reporting the latest findings on these modes of stabilization, challenges associated with these are also highlighted. Finally, though emphasis is placed on food emulsions, the fundamental precepts herein described are equally applicable to non-food multicomponent emulsion systems.  相似文献   

5.
This study evaluated how variations in polyglycerol polyricinoleate (PGPR) concentration and ethanol dispersed phase content affect the stability of ethanol-in-oil (E/O) emulsions. Results indicate that the stable 10?wt% E/O emulsions can be produced using 2?wt% PGPR. Increasing the ethanol dispersed phased content at constant PGPR concentration caused instability in emulsion. These emulsions remained stable to droplet flocculation and coalescence in the presence of Centella asiatica ethanol extract. PGPR does not greatly decrease the interfacial tension of the ethanol–oil interface. However, it adsorbed at the interface and stabilized the ethanol droplets in the emulsion via steric mechanism.  相似文献   

6.
Although surfactants and particles are often used together in stabilization of aqueous emulsions, the contribution of each species to such stabilization at the oil-water interface is poorly understood. The situation becomes more complicated if we consider the nonaqueous oil-oil interface, i.e, the stabilization of nonaqueous oil-in-oil (o/o) emulsions by solid particles and reactive surfactants which, to our knowledge, has not been studied before. We have prepared Pickering nonaqueous simple (o/o) emulsions stabilized by a combination of kaolinite particles and a nonionic polymerizable surfactant Noigen RN10 (polyoxyethylene alkylphenyl ether). Different pairs of immiscible oils were used which gave different emulsion stabilities. Using kaolinite with equal volumes of paraffin oil/formamide system gave no stable emulsions at all concentrations while the addition of Noigen RN10 enhanced the emulsion stability. In contrast, addition of Noigen RN10 surfactant to silicon oil-in-glycerin emulsions stabilized by kaolinite resulted in destabilization of the system at all concentrations. For all systems studied here, no phase inversion in simple emulsion was observed by altering the volume fraction of the dispersed phase as compared to the known water-based simple Pickering emulsions.   相似文献   

7.
Fluorocarbon-in-water emulsions are being explored clinically as synthetic oxygen carriers in general surgery. Stabilizing fluorocarbon emulsions against coarsening is critical in maintaining the biocompatibility of the formulation following intravenous administration. It has been purported that the addition of a small percentage of long-chain triglyceride results in stabilization of fluorocarbon emulsions via formation of a three-phase emulsion. In a three-phase emulsion, the triglyceride forms a layer around the dispersed fluorocarbon, thereby improving the adhesion of the phospholipid surfactant to the dispersed phase. In the present study, we examined the effect of triglyceride addition on the physicochemical characteristics of the resulting complex dispersion. In particular, we examined the particle composition and stability of the dispersed particles using a method which first fractionates (classifies) the different particles prior to sizing (i.e., sedimentation field-flow fractionation). It was determined that the addition of a long-chain triglyceride (soybean oil) results in oil demixing and two distinct populations of emulsion droplets. The presence of the two types of emulsion droplets is not observed via light scattering techniques, since the triglyceride droplets dominate the scattering due to a large difference in the refractive index between the particles and the medium as compared to fluorocarbon droplets. The growth of the fractionated fluorocarbon emulsion droplets was followed over time, and it was found that there was no difference in growth rates with and without added triglyceride. In contrast, addition of medium-chain-triglyceride (MCT) oils results in a single population of emulsion droplets (i.e., a three-phase emulsion). These emulsions are not stable to droplet coalescence, however, as significant penetration of MCT into the phospholipid lipid interfacial layer results in a negative increment in the monolayer spontaneous curvature, thereby favoring water-in-oil emulsions and resulting in destabilization of the emulsion to the effects of terminal heat sterilization or mechanical stress.  相似文献   

8.
Mixtures of polyols (glycerol, propylene glycol, glucose) and water were emulsified in oil (isopropyl myristate (IPM), medium chain triglycerides (MCT), long chain triglycerides (LCT), and d-limonene) under elevated pressures and homogenization, in the presence of polyglycerol polyricinoleate (PGPR), glycerol monooleate (GMO), and their mixture as emulsifiers to form water-in-oil emulsions. High pressures was applied to: a) the emulsion, b) the aqueous phase and c) the oil phase in the presence of the emulsifiers (PGPR and GMO). Under optimal pressure (2000 atms) applied to the ready-made emulsion or to the aqueous phase prior to its emulsification, and with optimal composition (30wt% polyol in the aqueous phase and MCT as the oil phase), the aqueous droplets were stable for months and submicron in size (0.1 μm). Moreover, due to equalization of the oil and the aqueous phases refractive indices, the emulsions were almost transparent. Pressure and polyols have synergistic effects on the emulsions stability. During preparation, surface tensions and interfacial tensions were dramatically reduced until an optimal water/polyols ratio was achieved, which allows rupturing of the droplets to submicronal size (0.1 μm) without recoalescence and fast diffusion to the interface. These unique W/O emulsions are suitable for preparing W/O/W double emulsions for sustained release of active materials for food applications.  相似文献   

9.
Oil-in-water emulsions were prepared using montmorillonite clay platelets, pre-treated with quaternary amine surfactants. In previous work, cetyl trimethylammonium bromide (CTAB) has been used. In this study, two more hydrophilic quaternary amine surfactants, Berol R648 and Ethoquad C/12, were used and formed Pickering emulsions, which were more stable than the emulsions prepared using CTAB coated clay. The droplets were also more mono-disperse. The most hydrophilic surfactant Berol R648 stabilizes the emulsions best. Salt also plays an important role in forming a stable emulsion. The droplet size decreases with surfactant concentration and relatively mono-disperse droplets can be obtained at moderate surfactant concentrations. The time evolution of the droplet size indicates a good stability to coalescence in the presence of Berol R648. Using polarizing microscopy, the clay platelets were found to be lying flat at the water oil interface. However, a significant fraction (about 90%) of clay stayed in the water phase and the clay particles at the water-oil interface formed stacks, each consisting of four clay platelets on average.  相似文献   

10.
Hydroxy-functionalized polymersomes (or block copolymer vesicles) were prepared via a facile one-pot RAFT aqueous dispersion polymerization protocol and evaluated as Pickering emulsifiers for the stabilization of emulsions of n-dodecane emulsion droplets in water. Linear polymersomes produced polydisperse oil droplets with diameters of ~50 μm regardless of the polymersome concentration in the aqueous phase. Introducing an oil-soluble polymeric diisocyanate cross-linker into the oil phase prior to homogenization led to block copolymer microcapsules, as expected. However, TEM inspection of these microcapsules after an alcohol challenge revealed no evidence for polymersomes, suggesting these delicate nanostructures do not survive the high-shear emulsification process. Thus the emulsion droplets are stabilized by individual diblock copolymer chains, rather than polymersomes. Cross-linked polymersomes (prepared by the addition of ethylene glycol dimethacrylate as a third comonomer) also formed stable n-dodecane-in-water Pickering emulsions, as judged by optical and fluorescence microscopy. However, in this case the droplet diameter varied from 50 to 250 μm depending on the aqueous polymersome concentration. Moreover, diisocyanate cross-linking at the oil/water interface led to the formation of well-defined colloidosomes, as judged by TEM studies. Thus polymersomes can indeed stabilize colloidosomes, provided that they are sufficiently cross-linked to survive emulsification.  相似文献   

11.
The hydrophobic fumed silica suspensions physically pre-adsorbed poly(N-isopropylacrylamide) (PNIPAM) in water could prepare oil dispersed in water (O/W) Pickering emulsion by mixing of silicone oil. The resulting Pickering emulsions were characterized by the measurements of volume factions of emulsified silicone oil, adsorbed amounts of the silica suspensions, oil droplet size, and some rheological responses, such as stress-strain sweep curve and dynamic viscoelastic moduli as a function of the added amount of PNIPAM. Moreover, their characteristics were compared with those of the O/W Pickering emulsions prepared by the hydrophilic fumed silica suspensions pre-adsorbed PNIPAM. For the emulsions prepared by the hydrophobic silica suspensions, an increase in the added amount of PNIPAM led to (1) a decrease in the volume fraction of the emulsified oil in the emulsified phase, (2) both the size of oil droplets and the adsorbed amount of the corresponding silica suspensions being almost constant, except for the higher added amounts, and (3) both the storage modulus (G′) and the yield shear strain being constant. The term of 1 is the same for the emulsions prepared by the hydrophilic silica suspensions, whereas both the adsorbed amount of the corresponding silica suspension and the G′ value increase and both the droplet size and the yield shear strain decrease with an increase in the added amount of PNIPAM. The differences between the rheological properties of the emulsions prepared by the hydrophilic silica suspensions and those by the hydrophobic ones are attributed to the hydrophobic interactions of the flocculated silica particles in the Pickering emulsions.  相似文献   

12.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

13.
A one-step double emulsification protocol using one surfactant was developed for oil-in-water-in-oil (O(1)/W/O(2)) double emulsions. Two n-alkane oils and three different surfactants were studied, with focus placed on a formulation containing mineral oil, glycerol monoleate (GMO) and deionized water. Phenomenologically, double emulsion formation and stability originate from the combined actions of phase inversion and interfacial charging of the oil/water interface during high shear homogenization. Based on the extent of double emulsion formation and stability, a critical emulsification zone dependent on the weight ratios of GMO to water was identified. Within this critical zone, enhanced O(1)/W/O(2) emulsion formation occurred at higher pH and lower salt concentrations, demonstrating the key role of interfacial charging on double emulsification. Overall, this novel approach provides a novel platform for the development of double emulsions with simple compositions and processing requirements.  相似文献   

14.
A population balance model for the separation of emulsions in a batch gravity settler is presented. Within the context of the model development, possible methodologies were elucidated for incorporating a) the physical properties of the bulk liquids, b) the physical properties of the phase interface, and c) the presence and functioning of interfacially active compounds. The model presented explicitly accounts for interfacial coalescence and the deformation of the emulsion zone due to the dynamic growth of the resolved dispersed phase; interfacial coalescence is modeled in terms of physically meaningful film drainage models and an approach for incorporating the accumulated buoyancy force in the dense packed layer is also discussed. Hydrodynamically hindered sedimentation is also considered in the model. The model is well suited to predict experimental batch settling data, especially data obtained from low-frequency NMR measurements of emulsion destabilization. The model predicts the evolution of the volume fraction of the dispersed phase at any axial position and time in the separator. Furthermore, the model predicts the location of the resolved dispersed phase interface as a function of time. Additionally, for any axial position and time in the settler, the model predicts the evolution of the average number density of droplets, the average volume/radius of droplets, the standard deviation of the droplet volume/radius, and the rate of growth of the droplets. The model is compared directly with experimental data for crude oil separations in Part II of this article.  相似文献   

15.
Poly(ethylene imine) (PEI) has been adsorbed onto the surface of Laponite clay nanoparticles from aqueous solution at pH 9 in order to produce an efficient hybrid Pickering emulsifier. This facile protocol allows formation of stable sunflower oil-in-water Pickering emulsions via homogenization at 12,000 rpm for 2 min at 20 °C. The effect of varying the extent of PEI adsorption on the Pickering emulsifier performance of the surface-modified Laponite is investigated for five oils of varying polarity using aqueous electrophoresis, thermogravimetric analysis, and laser diffraction studies. A minimum volume-average emulsion droplet diameter of around 60 μm was achieved at a Laponite concentration of 0.50% by mass when utilizing a PEI/Laponite mass ratio of 0.50. Such emulsions proved to be very stable toward droplet coalescence over time scales of months, although creaming is observed on standing within days due to the relatively large droplet size. These conditions correspond to submonolayer coverage of the Laponite particles by the PEI, which ensures that there is little or no excess PEI remaining in the aqueous continuous phase. This situation is confirmed by visual inspection of the underlying aqueous phase of the creamed emulsion when using fluorescently labeled PEI. These Pickering emulsions are readily converted into novel clay-based colloidosomes via reaction of the primary and/or secondary amine groups on the PEI chains adsorbed at the Laponite surface with either oil-soluble poly(propylene glycol) diglycidyl ether or water-soluble poly(ethylene glycol) diglycidyl ether cross-linkers. These colloidosomes were sufficiently robust to survive the removal of the internal oil phase after washing with excess alcohol, as judged by both optical and fluorescence microscopy. However, dye release studies conducted with clay-based colloidosomes suggest that these microcapsules are highly permeable and hence do not provide an effective barrier for retarding the release of small molecules.  相似文献   

16.
Droplet evolution in unstable, dilute oil-in-water Pickering emulsions was characterised using a combination of light scattering, confocal microscopy and rheology. Emulsions were formed at concentrations of silanised fumed silica particles that are not sufficient to prevent destabilisation. The key result is that destabilisation initially occurs via a combination of droplet flocculation and permeation. Close contact between the drops enhances oil transfer from smaller drops to the larger ones. The large drops swell over time until the attached particle density is insufficient to protect the drops against coalescence. Examination of the emulsion microstructure revealed the relationship between drop stability and the structural characteristics of the aggregates formed due to coagulation of the silica particles in the emulsions. The implications of these results for controlling Pickering emulsion stability are discussed.  相似文献   

17.
Surfactants are usually used for the preparation of emulsions; however, some have an adverse effect on the human body such as skin irritation, hemolysis, and protein denaturation, etc. In this study, we examined the preparation and formation mechanism of n-alkanol/water emulsions using alpha-cyclodextrin (alpha-CD) as an emulsifier. Emulsions were prepared by mixing oil and water phases for 4 min at 2500 rpm using a vortex mixer. The mechanism of emulsification was investigated with some physico-chemical techniques. From phase diagrams of n-alkanol/alpha-CD/water systems, the emulsion phase extended as the chain length of n-alkanols and the amount of alpha-CD added increased. Furthermore, the emulsion was not formed in the region where the n-alkanol/alpha-CD complex didn't precipitate; however, the emulsion was formed in the region where the complex precipitated. In addition, it was clear that the emulsions have a yield stress value and correspond to the Maxwell model from rheological measurement. Our experiments clearly showed that the stable emulsions are formed because the precipitated complexes form a dense film at the oil-water interface and prevent aggregation among dispersed phases. Furthermore, it is suggested that the creation of a three-dimensional network structure formed by precipitated complexes in the continuous phase contributes to the stabilization of the emulsion. Thus, we concluded that the n-alkanol/water emulsions using alpha-cyclodextrin were a kind of the Pickering emulsion.  相似文献   

18.
Chitosan without hydrophobic modification is not a good emulsifier itself. However, it has a pH-tunable sol-gel transition due to free amino groups along its backbone. In the present work, a simple reversible Pickering emulsion system based on the pH-tunable sol-gel transition of chitosan was developed. At pH > 6.0, as adjusted by NaOH, chitosan was insoluble in water. Chitosan nanoparticles or micrometer-sized floccular precipitates were formed in situ. These chitosan aggregates could adsorb at the interface of oil and water to stabilize the o/w emulsions, so-called Pickering emulsions. At pH < 6.0, as adjusted by HCl, chitosan was soluble in water. Demulsification happened. Four organic solvents (liquid paraffin, n-hexane, toluene, and dichloromethane) were chosen as the oil phase. Reversible emulsions were formed for all four oils. Chitosan-based Pickering emulsions could undergo five cycles of emulsification-demulsification with only a slight increase in the emulsion droplet size. They also had good long-term stability for more than 2 months. Herein, we give an example of chitosan without any hydrophobic modification to act as an effective emulsifier for various oil-water systems. From the results, we have determined that natural polymers with a stimulus-responsive sol-gel transition should be a good particulate emulsifier. The method for in situ formation of pH-responsive Pickering emulsions based on chitosan will open up a new route to the preparation of a wide range of reversible emulsions.  相似文献   

19.
Poly(styrene-co-methacrylic acid) (PS-co-MAA) particles were synthesized via surfactant-free emulsion polymerization and then used as particulate emulsifiers for preparation of Pickering emulsions. Our results showed that adjusting the solution pH can tune the wettability of PS-co-MAA particles to stabilize either water-in-oil (W/O) or oil-in-water (O/W) Pickering emulsions. Stable W/O emulsions were obtained with PS-co-MAA particles at low pH values due to their better affinity to the dispersed oil phase. In contrast, increasing the pH value significantly changed the stabilizing behavior of the PS-co-MAA particles, leading to the phase inversion and formation of stable O/W emulsions. We found that the oil/water ratio had a significant influence on pH value of the phase inversion. It decreased with decreasing the oil/water ratio, and no phase inversion occurred when the styrene volume fraction reduced to 10 %. Additionally, macroporous polystyrene (PS) foam and PS microspheres were obtained via polymerization of Pickering high internal phase emulsion (Pickering HIPE) and O/W Pickering emulsion, respectively.  相似文献   

20.
The inherent biocompatibility of Span and Tween surfactants makes them an important class of nonionic emulsifiers that are employed extensively in emulsion and foam stabilization. The adsorption of Span-Tween blend at water/oil surface of emulsion has been investigated using a population balance model for the first time. Destability of emulsion was modeled by considering sedimentation, coalescence and interfacial coalescence terms in population balance equation (PBE). The terms of coalescence efficiency and interfacial coalescence time were considered as a function of surface coverage of droplets by surfactant molecules. The surface coverage at different surfactant concentrations was determined by minimization of difference between the model predictions and experimental average droplet sizes. After optimization, the surface coverage outputs were fitted with different adsorption isotherms to evaluate the adsorption behavior of Span-Tween surfactants blend at water/oil surface. The results show that Freundlich isotherm can predict the adsorption behavior of closer to the experimental observation. Moreover, fitted parameters imply the favorable adsorption of Span-Tween blend at water/oil interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号