首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We introduce and analyse a new and special case of the Lorentz gas or the Wind-Tree model of Ehrenfest. This model (which has a number-theoretic character) is shown to exhibit normal diffusion, the diffusion coefficient C() being obtained in closed form as a function of the density . The function C() turns out to be an entire analytic function of , in spite of the model's non-classical high density behaviour. A collision expansion which is appropriate for high densities is also given.  相似文献   

2.
New experimental data regarding the motion of a drop along the axis of a vertical tube, filled with another highly viscous liquid, are obtained. The experiments are realised with sufficiently large drops for an internal circulation to develop and also for different pairs of fluids; the preponderant role of the gravity on the drop shape and consequently on its terminal velocity is pointed out. Moreover, by means of a visualization technique, details on the flow both inside and outside the drop are given.List of symbols g gravity acceleration - r distance from the drop center - R equivalent radius of the drop, i.e. the radius of the sphere having the same volume as the drop - R EQ radius of the equatorial section of the drop - R T tube radius - L AX half length of the drop - U 0 terminal velocity of the drop - P s Poiseuille number= U 0 e /4 g R 2 - Fr Fronde number = U 0 2 e /2 g R - Re Reynolds number = 2 U 0 R e / e - E o Eötvös number = 4g R 2/ - deformation parameter = e U 0/ - apparent density of the suspended liquid= | i e | - i viscosity of the suspended liquid - e viscosity of the suspending liquid - drop-to-tube radius ratio = R/R T - EQ equatorial drop-to-tube radius ratio = R EQ/R T - interfacial tension  相似文献   

3.
Zusammenfassung Die Einführung von Zylinderkoordinaten (x, r, ) in die Gleichgewichtsbedingungen der Schnittkräfte bzw. in die Beziehungen zwischen Verzerrung und Verschiebungen am differentialen Schalenabschnitt ermöglicht die Berechnung des Spannungs- und Verschiebungszustandes von drehsymmetrischen Membranen mit beliebig gekrümmter Meridiankurve auf die Integration einer einfachen, linearen partiellen Differentialgleichung zweiter Ordnung für eine charakteristische FunktionF bzw. zurückzuführen. Eine geschlossene Lösung und damit eine Darstellung der Schnittkräfte und Verschiebungen durch explizite Formeln ist bei harmonischer Belastung cosn für zwei Funktionsgruppen=x 2 und=x –3 möglich. Im Sonderfall der drehsymmetrischen und der antimetrischen Belastung mitn=0 undn=1 gelten die Gleichungen der Schnitt- und Verschiebungsgrößen für eine beliebige Meridianfunktion=(). Die Betrachtungen der Randbedingungen offener Schalen bei harmonischer Belastung geben über die infinitesimalen Deformationen einer drehsymmetrischen Membran mit überall negativer Krümmung Aufschluß.  相似文献   

4.
Zusammenfassung Es wird zunächst die laminare natürliche Konvektionsströmung in der Nähe eines ebenen Staupunktes und für die senkrechte Platte betrachtet. Die Stoffgesetze werden in der Umgebung des Bezugszustandes T (Umgebungstemperatur) in Taylor-Reihen entwickelt, deren Koeffizienten dimensionslose Stoffkennzahlen — wie die Prandtl-Zahl — sind, die als freie Parameter in die Rechnung eingehen. Wandschubspannung und Wärmeübergang lassen sich für beliebige Stoffgesetze als Potenzreihe eines Parameters universell angeben. Der Entwicklungsparameter ist dabei ein Maß für die Stärke der Wärmeübertragung. Ein Vergleich mit der Methode der Stoffwertverhältnisse ermöglicht die Bestimmung der dort vorkommenden Exponenten für alle Stoffe, ohne daß auf empirische Daten zurückgegriffen werden muß. Aus den Ergebnissen wird dann eine nicht-rationale Näherungsbeziehung für beliebige zylindrische Körper gewonnen.
The influence of variable fluid properties to free convection laminar flows
First the free convection laminar flow near a plane stagnation point and at the vertical flat plate is investigated. The functions describing the temperature dependence of the fluid properties are expanded as Taylor series at the reference state T (ambient temperature) whose coefficients are dimensionless fluid properties like the Prandtl number, but are not specified for particular fluids. Shear stress and heat flux at the wall are given for arbitrary temperature dependence of the fluid properties as universal power series of a parameter. This perturbation parameter describes the strength of heat transfer. Comparison with the property-ratio method shows how the exponents in that method depend on the fluid properties without any need of empirical information. From these results a non-rational approximation for arbitrary cylindrical bodies is developed.

Formelzeichen c a integrierter Reibungsbeiwert, Gl. (64) - c f Reibungsbeiwert, Gl. (49) - c p spez. Wärmekapazität bei konstantem Druck - d Transformationsparameter, Gl. (6) - e Exponent bei der Verteilung der Wandtemperatur, Kap. 2 - f( s ) dimensionslose Stromfunktion, Gl. (7) - f 0 f(s) für konstante Stoffwerte - f 1i dimensionslose Stromfunktionen, Gl. (25) i=1,2, 3, 4 - g Erdbeschleunigung - Gr Grashof-Zahl, Kap. 4 - K a Kombination aus dimensionslosen Stoffwerten, Gl. (24) - k ij dimensionslose Stoffwerte, Gln. (13) bis (17) i=1, 2; j=,,,c - k ij dimensionslose Stoffwerte, Gln. (20) bis (23) i=1,2; j=, - L Bezugslänge, Tabelle 1 - L i Linear-Operatoren, Gln. (37) bis (40) i=1,2,3,4 - m i Exponenten, Gl. (59), i=1, 2, 3, 4 - Hilfsfunktionen, Gl. (53), i=1,2, 3, 4 - n i Exponenten, Gl. (60), i=1,2,3,4 - Hilfsfunktionen, Gl. (55), i=1, 2, 3, 4 - N u Nusselt-Zahl, Kap. 6 - Pr *,Pr Prandtl-Zahl, Tabelle 1 - q w Wärmefluß an der Wand, Gl. (50) - Q w Gesamt-Wärmefluß an der Wand, Gl. (63) - T absolute Temperatur - u b Bezugsgeschwindigkeit, Kap. 4 - u, v Geschwindigkeitskomponenten - x, y kartesische Koordinaten - Kontur-Neigungswinkel, Bild 1 - Volumenausdehnungskoeffizient, Gl. (13) - Entwicklungsparameter, Gl. (15) - Viskosität - s Ähnlichkeitsvariable, Gl. (6) - ( S ) dimensionslose Temperatur, Tabelle 1 - 0 (S) dimensionslose Temperatur bei konstanten Stoffwerten - 1i imensionslose Temperaturen, Gl. (26) i=1,2, 3, 4 - Wärmeleitfähigkeit - kinematische Viskosität - Dichte W Wandschubspannung - Stromfunktion - i Exponenten, Gl. (69) i=,,,cp Indizes c.p. konstante Stoffwerte - L an der StelleL * - m mittlerer Wert - W Wand - mgebungszustand  相似文献   

5.
Zusammenfassung Auf dem gezeigten Weg wurden die Spannungen r , , z berechnet, wobei an Stelle der Veränderlichen r und die dimensionlosen Größen x i = r i /, x=r/ und x a = r/ in die Rechnung eingeführt wurden. Die Funktion (r, ) wurde dann für den Bereich 0,45xi1,0, 1xa 2 tabuliert. Hierbei zeigte sich, daß der Rechenaufwand bei der Durchrechnung eines Einzelbeispiels nach der Charakteristikenmethode wesentlich geringer ist. Bei der Anlage von Zahlentafeln zur Berechnung von Spannungen für beliebige Durchmesserverhältnisse ergab sich, daß der aufgezeigte Wege zu geringerem Rechenaufwand führt. Für das Beispiel r i /r a=1/2 wurden die Rohraufweitungen bestimmt und diese Werte noch durch praktische Versuche nachgeprüft. Hierbei ergab sich, daß die theoretisch bestimmten Rohraufweitungen in dem Streubereich der gemessenen Rohraufweitungen lagen, wobei Messungen an drei Rohren aus demselben Material und demselben Rohrverhältnis durchgeführt wurden. Insbesondere stimmten die theoretischen Rohraufweitungen auch mit den gemessenen Rohraufweitungen überein, wenn das Rohr entlastet wurde und die Restdeformationen bestimmt wurden.Daraus kann geschlossen werden, daß durch die berücksichtigte lineare Verfestigung die tatsächlichen Verhältnisse außerordentlich gut erfaßt werden.Der sogenannte Platzdruek eines Rohres kann auf rein rechnerischem Weg nicht erfaßt werden, da für =ra die geometrische Gestalt des Rohres instabil wird. Bei den Versuchen zeigt sich, wenn der Innendruck über p i ( =r **** a ) gesteigert wird, daß das Rohr schon bei geringen Überschreitungen aufzubauchen beginnt.Meinem Lehrer Herrn Prof. Dr. Dr. R. Grammel zum 65. Geburtstag gewidmet.  相似文献   

6.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

7.
This paper discusses the asymptotic behavior as 0+ of the chemical potentials associated with solutions of variational problems within the Van der Waals-Cahn-Hilliard theory of phase transitions in a fluid with free energy, per unit volume, given by 2¦¦2+ W(), where is the density. The main result is that is asymptotically equal to E/d+o(), with E the interfacial energy, per unit surface area, of the interface between phases, the (constant) sum of principal curvatures of the interface, and d the density jump across the interface. This result is in agreement with a formula conjectured by M. Gurtin and corresponds to the Gibbs-Thompson relation for surface tension, proved by G. Caginalp within the context of the phase field model of free boundaries arising from phase transitions.  相似文献   

8.
Simultaneous measurements of species volume concentration and velocities in a helium/air binary gas jet with a jet Reynolds number of 4,300 and a jet-to-ambient fluid density ratio of 0.64 were carried out using a laser/hot-wire technique. From the measurements, the turbulent axial and radial mass fluxes were evaluated together with the means, variances and spatial gradients of the mixture density and velocity. In the jet near field (up to ten diameters downstream of the jet exit), detailed measurements of u/ 0 U 0, v/ 0 U0, u v/ 0 U 0 2 , u 2 / 0 U 0 2 and v 2 / 0 U 0 2 reveal that the first three terms are of the same order of magnitude, while the last two are at least one order of magnitude smaller than the first three. Therefore, the binary gas jet in the near field cannot be approximated by a set of Reynolds-averaged boundary-layer equations. Both the mean and turbulent velocity and density fields achieve self-preservation around 24 diameters. Jet growth and centerline decay measurements are consistent with existing data on binary gas jets and the growth rate of the velocity field is slightly slower than that of the scalar field. Finally, the turbulent axial mass flux is found to follow gradient diffusion relation near the center of the jet, but the relation is not valid in other regions where the flow is intermittent.  相似文献   

9.
The aim of this paper is to present an experimental set-up using a Wollaston prism differential interferometer producing up to twenty successive short exposure white light interferograms at a high framing rate. It is shown that, through optical component calibration, the interferograms can be analysed to yield the instantaneous density field. This method has been successfully tested in the two-dimensional unsteady flow generated by the interaction of a mixing layer and a cavity.List of symbols h height of the downstream edge of the cavity - H height of backward facing step - M Mach number - t time - t time interval between two successive frames - N frequency - double-prism median plane - birefringence angle - p pressure fluctuation - C p pressure coefficient - biprism abscissa corresponding to any colour - 0 biprism reference abscissa corresponding to background colour - y deviation of light rays - R radius of curvature of spherical mirror - L virtual distance from the middle of the test section to the spherical mirror - E optical thickness - E e optical thickness corresponding to background colour - d E difference of optical thickness - d x abscissa difference - gas density - 0 stagnation gas density - e gas density of background colour  相似文献   

10.
This paper studies the slow flow of powders. It is argued that since powders can flow like liquids, there must be equations similar to those of liquids. The phenomenon of a variable density, dilatancy, is described by an analogue of temperature called the compactivity X. Whereas, in thermal physicsT = E/S, powders are controlled byX = V/S. The equations for, v, T of a liquid are replaced by, v, X. An analogy for free energy is described, and the solution to some simple problems of packing and mixing are offered. As an example of rheology, it is shown that the simplest flow equations produce a transition to plug flow in appropriate circumstances.Delivered as a Gold Medal Lecture at the Golden Jubilee Conference of the British Society of Rheology and Third European Rheology Conference, Edinburgh, 3–7 September, 1990.  相似文献   

11.
Zusammenfassung Diese Arbeit enthält Druck-Temperatur-Diagramme für 6 spezifische Zustandsgrößen und 16 erste Ableitungen und zusammengesetzte Größen von Wasser und Wasserdampf, die nach einem Gleichungssystem berechnet wurden, das unter dem Namen The 1968 IFC Formulation for Scientific and General Use von der 6. Internationalen Konferenz für die Eigenschaften des Wasserdampfes angenommen wurde. Einige Konsequenzen der thermodynamischen Konsistenz, das Verhalten im kritischen Gebiet und bei sehr kleinen Drücken werden diskutiert. Ferner werden die kinematische Viskosität und die Temperaturleitfähigkeit, sowie eine Beziehung zwischen dynamischer Viskosität und isenthalpem Drosselkoeffizienten angegeben.
This paper contains pressure-temperature diagrams for 6 properties and 16 first derivatives and combined terms for water and steam. These were calculated from a system of equations accepted by the 6th International Conference on the Properties of Steam, and called The 1968 IFC Formulation For Scientific and General Use. Some consequences of thermodynamic consistency, and the behaviour in the critical region and at very small pressures are discussed. Further, the kinematic viscosity and the thermal diffusivity and a relation between the dynamic viscosity and the throttling coefficient at constant enthalpy are given.

Bezeichnungen (s. auch Tabelle 1) k Temperaturleitfähigkeit:k=/c p - p Druck - r spezifische Verdampfungsenthalpie:r=hh - T thermodynamische oder Kelvin-Temperatur - t Celsius-Temperatur - dynamische Viskosität - Wärmeleitfähigkeit - v kinematische Viskosität:=/ - Dichte:=1/v Indices und Sättigungswerte des Dampfes und der Flüssigkeit Differenz der Sättigungswerte, z. B. h=hh  相似文献   

12.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

13.
The distribution of droplets in a plane Hagen-Poiseuille flow of dilute suspensions has been measured by a special LDA technique. This method assumes a well defined relation between the velocity of the droplets and their lateral position in the channel. The measurements have shown that the droplet distribution is non-uniform and depends on the viscosity ratio between the droplets and the carrier liquid. The results have been compared with a theory by Chan and Leal describing the lateral migration of suspended droplets.List of symbols a particle radius, m - d half width of the channel, m - Re flow Reynolds number, = 2 m · d · /µ - flow velocity, m/s - m flow velocity at the channel axis, m/s - We Weber number, = 2 m Emphasis>/2 · d · / - x distance from center line (x = 0) of the channel, m - non-dimensional distance from the channel center line, x d - y distance along the channel (y = 0 at channel inlet), m - non-dimensional distance along the channel, = y/2d - non-dimensional, normalized distance along the channel, = · m · µ/ - interfacial tension, N/m - viscosity ratio of dispersed (droplet) phase to viscosity of continuous phase - µ viscosity of continuous phase, Pa · s - density of continuous phase, kg/m3 - phase density difference, kg/m3 Experiments were performed at Max-Planck-Institut, Göttingen  相似文献   

14.
The purpose of this article is to describe an optical technique based on differential interferometry with strongly phase-shifted beams using a white light source and a Wollaston prism. This technique is recommonded particularly for measuring very small index variations. It has been used for analyzing hypersonic flows around slender axisymmetrical bodies. The radial gas density distributions obtained in the shock layers were compared with the analytical solutions developed by Merlen and Andriamanalina (1992) and with Jones' tabulated computations (1969).List of Symbols m exponent of the obstacle's power law - R, R radii of the shock and of the obstacle, respectively - R c radius of curvature of the spherical mirror - r radial coordinate - L obstacle length - L m distance from model to spherical mirror - x, y cartesian coordinates with origin at obstacle nose - geometric angle of incidence - birefringence angle of the Wollaston prism, =() - wavelength - relative thickness of the obstacle - c cone apex semi-angle - Y distance between the two partial beams at the level of the test section - n refractive index of the medium - E optical thickness - e test section width - y light deviation along the y axis - h length of the path traveled by one of the two beams through the shock layer - gas density - s gas density under standard conditions - freestream gas density - min minimum detectable phase difference  相似文献   

15.
A computerized infrared (IR) scanning radiometer is employed to characterize the boundary layer development over a model wing, having a Göttingen 797 cross-section, by measuring the temperature distribution over its heated surface. The Reynolds analogy is used to relate heat transfer measurements to skin friction. The results show that IR thermography is capable of rapidly detecting location and extent of transition and separation regions of the boundary layer over the whole surface of the tested model wing. Thus, the IR technique appears to be a suitable and effective diagnostic tool for aerodynamic research in wind tunnels.List of symbols c airfoil chord - c f local skin friction coefficient = 2/( V 2) - c p specific heat coefficient at constant pressure - h local convective heat transfer coefficient - Nu Nusselt number = h x/ - Nu c Nusselt number based on airfoil chord = h c/ - Pr Prandtl number c p / - Q j wall heat flux due to Joule heating - Q l heat flux loss - Re Reynolds number V x/ - Re c Reynolds number based on airfoil chord = V c/ - St Stanton number = h/c p V - T w wall temperature - T aw adiabatic wall temperature - V velocity of the free stream - x chordwise spatial coordinate - angle of attack - thermal conductivity coefficient - dynamic viscosity coefficient - mass density - wall shear stress  相似文献   

16.
Resonant generation of a solitary wave in a thermocline   总被引:1,自引:0,他引:1  
The resonant generation of a second-mode internal solitary wave, resulting from a ship internal waves system damping in a thermocline, is studied experimentally. The source of the stationary internal waves was provided by an oblong ellipsoid of revolution towed horizontally and uniformly at the depth of the thermocline center. The ranges of the Reynolds and Froude numbers were 500Re=Ul/v 15000 and 0.3Fi=U/N max D1.0, respectively. When the body's speed and the linear long-wave second-mode phase speed were equal, an internal solitary wave of the bulge type was observed. The shape of the wave satisfied the Korteweg-de Vries equation. The Urcell parameter was equal to 10.2.List of Symbols L, B, H towing tank length, breadth and height respectively - z vertical coordinate - D characteristic vertical dimension of the body - a minor semiaxis of an ellipsoid - b major semiaxis of an ellipsoid (maximum ellipsoid diameter D=2a) - l length of the body ( =2b) - U velocity of the body - t temperature - g acceleration due to gravity - i fresh water density at ith level - fresh water density for temperature t=4°C - o water density at the center of the thermocline - i density variation due to the temperature variation at the ith horizon - N Brunt-Väisälä frequency - N max maximum value of Brunt-Väisälä frequency - Re Reynolds number - Fi internal Froude number - f n eigenfunction of the boundary-value problem for the nth mode - n nth mode frequency - k n nth mode horizontal wavenumber - C n limiting phase speed of a linear nth mode interval wave (= n/kn;kn 0) - Ur Urcell parameter - v fresh water kinematic viscosity - conventional density - half-length of a solitary wave - 0 solitary wave height - time This work was partially supported by the INTAS (grant no. 94-4057) and by the Russian Foundation of Basic Research under grant no. 94-05-17004-a.A version of this paper was presented at the Second International Conference on Experimental Fluid Mechanics, Torino, Italy, 4–8 July, 1994.  相似文献   

17.
Two optical methods, light absorption and LDA, are applied to measure the concentration and velocity profiles of droplet suspensions flowing through a tube. The droplet concentration is non-uniform and has two maxima, one near the tube wall and one on the tube axis. The measured velocity profiles are blunted, but a central plug-flow region is not observed. The concentration of droplets on the tube axis and the degree of velocity profile blunting depend on relative viscosity. These results can be qualitatively compared with the theory of Chan and Leal.List of symbols a particle radius,m - a/R, non-dimensional particle radius - c volume concentration of droplets in suspension, m3/m3 - c 5 stream-average volume concentration of droplets in suspension, - D 2 R, tube diameter, m - L optical path length, m - L ij path length of laser beam through thej-th concentric layer when the beam crosses the tube diameter at the point on the inner circumference of thei-th layer, m - N exponent in Eqs. (3) and (4) - Q volumetric flowrate of suspension, - R tube radius, m - Re S S D, flow Reynolds number - r radial position (r = 0 on a tube axis), m - r r/R, non-dimensional radial position - v velocity of suspension, m/s - v v/v S , non-dimensional velocity - v 0 centre-line velocity of suspension (r = 0), m/s - v S Q/ R 2, stream-average velocity of suspension, m/s - x streamwise position (x = 0 at tube inlet), m - x x/D, non-dimensional streamwise position - c density of continuous phase, kg/m3 - d density of dispersed phase, kg/m3 - s stream-average density of suspension, kg/m3, equals density when homogenized - d - c, phase density difference, kg/m3 - µc viscosity of continuous phase, Pa · s - µd viscosity of dispersed (droplet) phase, Pa · s - µd/c, viscosity ratio - interfacial tension, N/m This work was financially supported by the National Science Foundation (USA) through an agreement no. J-F7F019P, M. Sklodowska-Curie fund  相似文献   

18.
A permeameter for unsaturated soil   总被引:3,自引:0,他引:3  
A permeameter for unsaturated soil was developed by observing the way in which pore water recovers hydrostatic equilibrium. It works like an hour glass that is turned upside-down everytime the state of reference (or hydrostatic equilibrium) is reached. The hydraulic conductivity is deduced from the curves of evolution of pore-water pressure and from the distribution of partial density of water at hydrostatic equilibrium. Roman Letters a is defined by (10), kg m–3 - A n coefficients of the analytic solution, kgm–3 - C 1, C 2, C 3, C 4 constants and constants of integration - D diffusivity, m2 s-1 - g gravity constant, m s-2 - g gravity vector field - K hydraulic conductivity defined by (2), m5 s-1 J-1 - K w hydraulic conductivity defined by (5), m -1 - k permeability - L length of soil sample, m - n integer in (22) - n porosity - p absolute pore water pressure, Pa - p 0 absolute pore water pressure, Pa - p a absolute air pressure, Pa - q volume flux or Darcy's velocity, m s-1 - r exponent defined by (13) - S w degree of saturation, % - t time variable, sec - u n , v n are defined by (22b), (22c) - x(x, y, z) space variable Greek Letters , are defined by (11), (13) - w dynamic viscosity - water partial density, kg m–3. It is the ratio of the mass of water to total volume of a representative elementary volume - 0, l water partial densities, kgm–3 - w density of water, kgm–3 - s density of solid particles, kgm–3 - differences of partial density, kgm–3 - p differences of water pressure, Pa - pi - , · gradient operator, divergence operator - Laplacian operator - volumetric water content, % - piezometric head, m  相似文献   

19.
The present investigation was concerned with the rheological behaviour of dilute suspensions of solid particles in a gas in a vertical cocurrent flow moving upwards. Starting from the experimentally determined dependence of the pressure drop on the concentration of solid particles and the Reynolds number of the carrier medium in the steady flow region, the rheological parameters were estimated using pseudo-shear diagrams. Air was the carrier medium and the dispersed phase was one of six fractions of polypropylene powder and five fractions of glass ballotini. The results show that the investigated two-phase systems have pseudoplastic character which becomes more pronounced with increases in concentration, equivalent diameter and density of solid particles in the flowing suspension. C d coefficient of particle resistance - d e equivalent diameter of particles - D column diameter - Fr Froude number - g gravitational acceleration - K rheological parameter - L length - n rheological parameter - p t pressure drop due to friction - p m total pressure drop - p ag pressure drop due to acceleration of the gas phase - p as pressure drop due to acceleration of the solid phase - p g hydrostatic pressure of the gas phase - p s specific effective weight of the dispersed phase - r radius - Re Reynolds number - Re p Reynolds number of a particle - Re G generalized Reynolds number - Re G1 generalized Reynolds number relating to the end of the laminar flow region - Re G2 generalized Reynolds number relating to the beginning of the turbulent flow region - w z axial component of velocity - u t steady free-fall velocity of a single particle - w average velocity - w g average velocity of the gas phase - w s average velocity of the dispersed phase of solid particles - relative mass fraction of solid particles - x s volume fraction of solid particles - g coefficient of pressure drop due to friction - µ dynamic viscosity - g density of the gas phase - m density of the suspension - s density of solid particles - ds density of the dispersed phase - w shear stress at the wall  相似文献   

20.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号