首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
For both the longitudinal binding force and the lateral binding force, a generic way of controlling the mutual attraction and repulsion (usually referred to as reversal of optical binding force) between chiral and plasmonic hybrid dimers or tetramers has not been reported so far. In this paper, by using a simple plane wave and an onchip configuration, we propose a possible generic way to control the binding force for such hybrid objects in both the near-field region and the far-field region. We also investigate different inter-particle distances while varying the wavelengths of light for each inter-particle distance throughout the investigations. First of all, for the case of longitudinal binding force, we find that chiral-plasmonic hybrid dimer pairs do not exhibit any reversal of optical binding force in the near-field region nor in the far-field region when the wavelength of light is varied in an air medium. However, when the same hybrid system of nanoparticles is placed over a plasmonic substrate, a possible chip, it is possible to achieve a reversal of the longitudinal optical binding force. Later, for the case of lateral optical binding force, we investigate a setup where we place the chiral and plasmonic tetramers on a plasmonic substrate by using two chiral nanoparticles and two plasmonic nanoparticles, with the setup illuminated by a circularly polarized plane wave. By applying the left-handed and the right-handed circular polarization state of light, we also observe the near-field and the far-field reversal of lateral optical binding force for both cases. As far as we know, so far, no work has been reported in the literature on the generic way of reversing the longitudinal optical binding force and the lateral optical binding force of such hybrid objects. Such a generic way of controlling optical binding forces can have important applications in different fields of science and technology in the near future.  相似文献   

2.
郭娟娟  汪茂胜  黄万霞 《中国物理 B》2017,26(12):124211-124211
A three-dimensional chiral metamaterial with four-fold rotational symmetry is designed, and its optical properties are investigated by numerical simulations. The results show that this chiral metamaterial has the following features: high polarization conversion, perfect circular dichroism, and asymmetric transmission of circularly polarized light. A comparison of the results of chiral metamaterials without and with weak coupling between the constituent nanostructures enables us to confirm that the optical properties of our proposed nanostructure are closely related to the coupling between the single nanoparticles. This means that the coupling between nanoparticles can enhance the polarization conversion, circular dichroism, and asymmetric transmission. Due to the excellent optical properties, our metamaterial might have potential applications in the development of future multi-functional optical devices.  相似文献   

3.
The optical activity of a chiral crystal and common-path heterodyne interferometry are used in a simple measurement technique that was developed to measure small wavelength differences. When circularly polarized heterodyne light passes through a chiral crystal, the plane of polarization rotates. The phase difference between the right- and left-circular lights is directly proportional to the angle of rotation. The rotation angle depends strongly on the wavelength. The phase difference can be accurately detected and substituted into specially derived equations to estimate wavelength variations. The feasibility of this method was demonstrated and the wavelength sensitivity was about 0.00812 nm. This method provides the advantages of a simple structure, ease of operations, a large wavelength measurement range and high sensitivity.  相似文献   

4.
Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.  相似文献   

5.
The optical chirality of the double “L” structures is investigated by the finite element method in this paper. The simulated results show that the double “L” structure has distinct chiral effect for the distance less than 300 nm. For the double “L” structure with the angle of 90°, the peak wavelength of the extinction coefficient for the left circular polarized light is larger than it for the right circular polarized light. The CD spectra are almost at the same wavelength for the distance 175–300 nm, while its wavelength increases with the decrease of the distance from 175 to 100 nm. Although the chiral effect of the double “L” structure for the angle 75° is similar with the structure for the angle 90°, the chiral effect of the structure with the angle 105° is opposite with the structure for the angle 75° and 90°.  相似文献   

6.
Dark‐field illumination is shown to make planar chiral nanoparticle arrangements exhibit circular dichroism in extinction, analogous to true chiral scatterers. Single oligomers, consisting rotationally symmetric arrangements of gold nanorods, are experimentally observed to exhibit circular dichrosim at their maximum scattering with strong agreement to numerical simulation. A dipole model is developed to show that this effect is caused by a difference in the projection of a nanorod onto the handed orientation of electric fields created by a circularly polarized dark‐field normally incident on a glass‐air interface. Owing to this geometric origin, the wavelength of the peak chiral response is experimentally shown to shift depending on the separation between nanoparticles. All presented oligomers have physical dimensions less than the operating wavelength, and the applicable extension to closely packed planar arrays of oligomers is demonstrated to amplify the magnitude of circular dichroism. This realization of strong chirality in these oligomers demonstrates a new path to engineer optical chirality from planar devices using dark‐field illumination.  相似文献   

7.
Li Hu 《中国物理 B》2021,30(12):127303-127303
A strong chiral near-field plays significant roles in the detection, separation and sensing of chiral molecules. In this paper, a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and linearly polarized light illuminations in the mid-infrared region. Owing to the near-field interaction between plasmonic resonant modes of two nanosheets excited by circularly polarized light, there is a strong single-handed chiral near-field in the gap between the two graphene nanosheets and the maximum enhancement of the optical chirality could reach two orders of magnitude. As expected, the intensity and the response wavelength of the chiral near-fields could be controlled by the Fermi level and geometrical parameters of the graphene nanosheets, as well as the permittivity of the substrate. Meanwhile, based on the interaction between the incident field and scattered field, the one-handed chiral near-field in the gap also could be generated by the linearly polarized light excitation. For the two cases, the handedness of the chiral near-field could be switched by the polarized direction of the incident light. These results have potential opportunities for applications in molecular detection and sensing.  相似文献   

8.
The strength of the enantioselective interaction of chiral semiconductor nanocrystals with circularly polarized light can be varied over a wide range, which finds a series of important applications in modern nanophotonics. As a rule, this interaction is relatively weak, because the dimension of nanocrystals is much smaller than the wavelength of the optical radiation, and the optical activity of nanocrystals is rather low. In this work, we show theoretically that, by applying ion doping, one can significantly enhance the optical activity of nanocrystals and to vary its magnitude over a wide range of values and over a wide range of frequencies. We show that, by precisely arranging impurities inside nanocrystals, one can optimize the rotatory strengths of intraband transitions, making them 100 times stronger than typical rotatory strengths of small chiral molecules.  相似文献   

9.
The deformation and plasmon effects of collective localized surface plasmons between incident light and bubble-pit AgOx-type super-RENS structure have been studied using finite-difference time-domain (FDTD) method. We find that the polarization, wavelength of incident light, and particle sizes of Ag nanoparticles are sensitive to the plasma resonance. The Ag nanoparticles inside the bubble-pit AgOx-type super-RENS structure give the additional outer boundaries to the motion of the Ag nanoparticles, and excite more evanescent field which located in the far edge of the bubble from the optical axis of the incident beam. The optical properties between active layer and incident light with polarization direction, different wavelengths, and varied particle sizes of Ag nanoparticles exhibits nonlinear optical behavior in the near field. The far-field signals of different wavelength of incident light confirm the relation between highly localized near-field distributions and enhanced resolution of far-field signals. The subwavelength recording marks smaller than the diffraction limit were distinguishable since the Ag nanoparticles with high localized fields transferred evanescent waves to detectable signals in the far field. PACS 42.79.Vb; 71.15.Rn; 72.15.Rn; 73.22.-f; 73.22.Lp; 78.67.Bf; 73.20.Mf  相似文献   

10.
碳纳米粒子悬浮液具有良好的光限幅性质,是一种优良的宽波段光限幅材料。通过热传导方程和米氏散射理论建立了微气泡半径与入射光能量、碳纳米粒子悬浮液散射系数和透过率的理论模型。采用Matlab数值模拟了散射系数随微气泡尺寸因子的变化关系,碳纳米粒子悬浮液光限幅性能随入射光能量的变化规律。研究了气泡尺寸因子、入射激光能量以及波长对碳纳米粒子悬浮液光限幅特性的影响。研究发现当激光能量达到一定值时,微气泡的半径保持恒定,不再随入射激光能量的增加而增加。微气泡尺寸的增大对碳纳米粒子悬浮液的透过率有着显著的影响。同时,碳纳米粒子悬浮液对不同入射光波长和光能表现出不同的光限幅性能。研究结果为实验研究提供了理论指导。  相似文献   

11.
A left-handed chiral sculptured thin film (STF) that reflects strongly at the wavelength of the circular Bragg resonance tends to partially convert the handedness of incident LCP (left-circularly-polarized) light to RCP (right-circularly-polarized). We show that the cross-polarized component of the reflected RCP beam can be eliminated by interference with an additional RCP beam that is reflected at the interface of an isotropic cover and an AR (antireflecting) layer. For best results the refractive index and thickness of the AR layer need to accommodate a phase change on reflection that occurs at the chiral film. Effective suppression of the reflectances RRR, RRL, RLR and the transmittances TRL, TLR can be achieved by sandwiching the chiral reflector between such amplitude and phase-matched AR coatings. Co-polarized chiral reflectors of this type may form efficient handed optical resonators. For LCP light the optical properties of such a handed resonator are formally the same as the properties of the isotropic passive or active Fabry–Perot resonators, but the handed resonator is transparent to RCP light.  相似文献   

12.
Based on Rayleigh-Gans scattering theory of spherical particles and evanescent-wave guiding properties of nanofibers, we calculate the scattered power of nanoparticles in the vicinity of typical waveguiding nanofibers. It shows that, by optimizing the wavelength of the probing light and the diameter of the nanofiber, nanoparticle-induced scattering intensity can reach detectable level with possibilities for single-molecule detection. Results presented in this work suggest a simple approach to high-sensitivity nanofiber optical sensing of nanoparticles in aqueous solutions.  相似文献   

13.
In this study, the optical rectification (OR) effect on a surface of the isotropic thin film which consists of chiral molecules that base on a one-electron-on-helix model and a two-coupled-oscillator (Kuhn) model have been investigated by us separately. The expressions of dc electric polarization on the isotropic chiral thin film surface and the relations between the OR and microscopic parameters of chiral molecular configuration have been obtained by theoretical derivation. Furthermore, the relations of dc electric polarization with the wavelength of incident light and microscopic parameters of chiral molecular configuration have been simulated numerically. We find the fact that the OR on the isotropic chiral thin film surface is influenced by microscopic parameters of chiral molecular configuration. As well, compared with chiral molecules based on a two-coupled-oscillator Kuhn model, which are based on a one-electron-on-helix model are more suitable for the OR from the point of the influences of molecular microscopic parameters on the OR. The influences of molecular microscopic parameters on the OR might aid in providing some insights into designing and synthesizing new better nonlinear chiral material.  相似文献   

14.
We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for the effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of “meta-atoms”. It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.  相似文献   

15.
Yang X  Liu Y  Tian F  Yuan L  Liu Z  Luo S  Zhao E 《Optics letters》2012,37(11):2115-2117
A fiber optic integrated modulation-depth-tunable modulator based on a type of hollow optical fiber with suspended core is proposed and investigated. We synthesized magnetic fluid containing superparamagnetic Fe(3)O(4) nanoparticles and encapsulated it in the hollow optical fiber as the cladding layer of the suspended core by fusing the hollow optical fiber with the multimode optical fibers. The light with a wavelength of 632.8 nm is coupled in and out of the modulating element by a tapering technique. Experimental results show that the light attenuation in the system can be greatly influenced by only 2.0×10(-2) μL of the magnetic fluid under different magnetic field strengths. The saturated modulation depth is 43% when the magnetic field strength is 489 Oe. The response time of the system is <120 ms. Significantly, this work presents information for the development of all-fiber modulators, including other integrated electro-optic devices, such as optical switch, optical fiber filter, and magnetic sensors utilizing the special structure of this hollow optical fiber with suspended core and superparamagnetic magnetic fluid.  相似文献   

16.
Based on one-electron-on-a-helix model and two-coupled-oscillator model, zero-frequency first hyperpolarizabilities of chiral molecules are investigated. Their expressions and the relations between them and microscopic parameters of chiral molecules are obtained by theoretical derivation. Furthermore, the relations of zero-frequency first hyperpolarizabilities with the wavelength of incident light and microscopic parameters of chiral molecules are simulated numerically. We find the fact that influences of microscopic parameters of chiral molecules on zero-frequency first hyperpolarizabilities are different by using different chiral molecular microscopic parameters such as the helix radius and the helix pitch for one-electron-on-a-helix model and α for two-coupled-oscillator model. Furthermore, the influence of microscopic molecular parameter to the zero-frequency first hyperpolarizabilities can also help to comprehend nonlinear optical mechanism of chiral molecules.  相似文献   

17.
Owing to exotic optical responses, metallic nanoparticles and nanostructures are finding broad applications in laser science, leading to numerous design variations of plasmonic nanolasers. Nowadays, two of the most intriguing plasmonic nanolasing devices are spasers and random lasers. While a spaser is based on a single metallic nanoparticle resonator with the optical feedback provided by the localized surface plasmon resonance, the operation of a random laser relies on multiple light scattering within randomly distributed metallic nanoparticles. In this paper, an up‐to‐date review on the applications of metallic nanoparticles in spasers and random lasers is provided. Principles of a random spaser, a device combining the features of a spaser and a random laser, are briefly discussed as well. The paper is focused on major theoretical and experimental approaches to control the core metrics of lasing performance, including threshold, resonant wavelength, and emission directionality. The applications of spasers and random lasers in the fields of sensing and imaging are also mentioned. Finally, the challenges and future perspectives in this area of research are discussed.  相似文献   

18.
A novel circular polarized optical heterodyne interferometer using a Zeeman laser to measure optical rotation both in nonscattered and scattered chiral medium is proposed. A pair of correlated orthogonal circular polarized light waves of different temporal frequency propagating in the chiral medium at different speed is studied. This results in phase retardation between circular polarized light waves of which the phase difference is proportional to the optical rotation angle of a linear polarized light in a chiral medium. In the mean time, two orthogonal circular polarized light waves can be treated as a circular polarized photon pair that is able to reduce the scattering effect in a scattered chiral medium. Then the optical rotation angle can be measured in the scattering medium. In addition, a common-path configuration with respect to circular polarized light waves immune the background noise. This further improves the sensitivity on optical rotation measurement based on phase difference detection.  相似文献   

19.
The oblique propagation of light through a layer of chiral photonic crystal (PC) with linear profiles of modulation parameters is considered. The problem is solved by the method of Ambartsumyan layer addition. The wavelength dependences of the amplitude characteristics have been studied at different angles of incidence in two cases, i.e., in a chiral PC with a linear profile of modulation period and a chiral PC with a linear profile of modulation depth. It is shown that the photonic band gap is broadened in both cases and that omnidirectional reflection occurs under certain conditions. The nonreciprocity features are investigated for these two cases and it is shown that a chiral PC with a linear profile of modulation period can operate as an ideal optical diode in a certain frequency range. The features of the effect of change in the modulation parameters on the photon density of states, group velocity, and group velocity dispersion are analyzed. It is shown that, when the modulation parameters change in space, the photon density of states at the photonic band gap edges significantly decreases. It is proposed to use PCs with a spatially changing modulation period can be used to compress (expand) light pulses.  相似文献   

20.
唐裕霞  王蜀霞  黄映洲  方蔚瑞 《中国物理 B》2022,31(1):17303-017303
Benefiting from the induced image charge on film surface,the nanoparticle aggregating on metal exhibits interesting optical properties.In this work,a linear metal nanoparticle trimer on metal film system has been investigated to explore the novel optical phenomenon.Both the electric field and surface charge distributions demonstrate the light is focused on film greatly by the nanoparticles at two sides,which could be strongly modulated by the wavelength of incident light.And the influence of nanoparticle in middle on this light focusing ability has also been studied here,which is explained by the plasmon hybridization theory.Our finding about light focusing in nanoparticle aggregating on metal film not only enlarges the novel phenomenon of surface plasmon but also has great application prospect in the field of surface-enhanced spectra,surface catalysis,solar cells,water splitting,etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号