首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this note is to prove, in the spirit of a rigidity result for isolated singularities of Schlessinger see Schlessinger (Invent Math 14:17–26, 1971) or also Kleiman and Landolfi (Compositio Math 23:407–434, 1971), a variant of a rigidity criterion for arbitrary singularities (Theorem 2.1 below). The proof of this result does not use Schlessinger’s Deformation Theory [Schlessinger (Trans Am Math Soc 130:208–222, 1968) and Schlessinger (Invent Math 14:17–26, 1971)]. Instead it makes use of Local Grothendieck-Lefschetz Theory, see (Grothendieck 1968, Éxposé 9, Proposition 1.4, page 106) and a Lemma of Zariski, see (Zariski, Am J Math 87:507–536, 1965, Lemma 4, page 526). I hope that this proof, although works only in characteristic zero, might also have some interest in its own.  相似文献   

2.
Subspace codes and particularly constant dimension codes have attracted much attention in recent years due to their applications in random network coding. As a particular subclass of subspace codes, cyclic subspace codes have additional properties that can be applied efficiently in encoding and decoding algorithms. It is desirable to find cyclic constant dimension codes such that both the code sizes and the minimum distances are as large as possible. In this paper, we explore the ideas of constructing cyclic constant dimension codes proposed in Ben-Sasson et al. (IEEE Trans Inf Theory 62(3):1157–1165, 2016) and Otal and Özbudak (Des Codes Cryptogr, doi: 10.1007/s10623-016-0297-1, 2016) to obtain further results. Consequently, new code constructions are provided and several previously known results in [2] and [17] are extended.  相似文献   

3.
In this short note, we generalized an energy estimate due to Malchiodi–Martinazzi (J Eur Math Soc 16:893–908, 2014) and Mancini–Martinazzi (Calc Var 56:94, 2017). As an application, we used it to reprove existence of extremals for Trudinger–Moser inequalities of Adimurthi–Druet type on the unit disc. Such existence problems in general cases had been considered by Yang  (Trans Am Math Soc 359:5761–5776, 2007; J Differ Equ 258:3161–3193, 2015) and Lu–Yang (Discrete Contin Dyn Syst 25:963–979, 2009) by using another method.  相似文献   

4.
We suggest new characterizations of the Banzhaf value without the symmetry axiom, which reveal that the characterizations by Lehrer (Int J Game Theory 17:89–99, 1988) and Nowak (Int J Game Theory 26:137–141, 1997) as well as most of the characterizations by Casajus (Theory Decis 71:365–372, 2011b) are redundant. Further, we explore symmetry implications of Lehrer’s 2-efficiency axiom.  相似文献   

5.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

6.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

7.
We present a unified framework to identify spectra of Jacobi matrices. We give applications of the long-standing problem of Chihara (Mt J Math 21(1):121–137, 1991, J Comput Appl Math 153(1–2):535–536, 2003) concerning one-quarter class of orthogonal polynomials, to the conjecture posed by Roehner and Valent (SIAM J Appl Math 42(5):1020–1046, 1982) concerning continuous spectra of generators of birth and death processes, and to spectral properties of operators studied by Janas and Moszyńki (Integral Equ Oper Theory 43(4):397–416, 2002) and Pedersen (Proc Am Math Soc 130(8):2369–2376, 2002).  相似文献   

8.
Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with \(\delta W^{\pm }=0\) is either Einstein, or a finite quotient of \(S^3\times \mathbb {R}\), \(S^2\times \mathbb {R}^2\) or \(\mathbb {R}^4\). We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either Kähler–Einstein, or a finite quotient of \(M\times \mathbb {C}\), where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenböck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.  相似文献   

9.
Theorems due to Stenger (Bull Am Math Soc 74:369–372, 1968) and Nudelman (Int Equ Oper Theory 70:301–305, 2011) in Hilbert spaces and their generalizations to Krein spaces in Azizov and Dijksma (Int Equ Oper Theory 74(2):259–269, 2012) and Azizov et al. (Linear Algebra Appl 439:771–792, 2013) generate additional questions about properties a finite-codimensional compression \({T_0}\) of a symmetric or self-adjoint linear relation \({T}\) may or may not inherit from \({T}\). These questions concern existence of invariant maximal nonnegative subspaces, definitizability, singular critical points and defect indices.  相似文献   

10.
In this paper, we further study the forward–backward envelope first introduced in Patrinos and Bemporad (Proceedings of the IEEE Conference on Decision and Control, pp 2358–2363, 2013) and Stella et al. (Comput Optim Appl, doi: 10.1007/s10589-017-9912-y, 2017) for problems whose objective is the sum of a proper closed convex function and a twice continuously differentiable possibly nonconvex function with Lipschitz continuous gradient. We derive sufficient conditions on the original problem for the corresponding forward–backward envelope to be a level-bounded and Kurdyka–?ojasiewicz function with an exponent of \(\frac{1}{2}\); these results are important for the efficient minimization of the forward–backward envelope by classical optimization algorithms. In addition, we demonstrate how to minimize some difference-of-convex regularized least squares problems by minimizing a suitably constructed forward–backward envelope. Our preliminary numerical results on randomly generated instances of large-scale \(\ell _{1-2}\) regularized least squares problems (Yin et al. in SIAM J Sci Comput 37:A536–A563, 2015) illustrate that an implementation of this approach with a limited-memory BFGS scheme usually outperforms standard first-order methods such as the nonmonotone proximal gradient method in Wright et al. (IEEE Trans Signal Process 57:2479–2493, 2009).  相似文献   

11.
The Lovász theta number Lovász (IEEE Trans Inf Theory 25:1–7, 1979) is a well-known lower bound on the chromatic number of a graph \(G\), and \(\varPsi _K(G)\) is its impressive strengthening Gvozdenovi? and Laurent (SIAM J Optim 19(2):592–615, 2008). The bound \(\varPsi _K(G)\) was introduced in very specific and abstract setting which is tough to translate into usual mathematical programming framework. In the first part of this paper we unify the motivations and approaches to both bounds and rewrite them in a very similar settings which are easy to understand and straightforward to implement. In the second part of the paper we provide explanations how to solve efficiently the resulting semidefinite programs and how to use optimal solutions to get good coloring heuristics. We propose two vertex coloring heuristics based on \(\varPsi _K(G)\) and present numerical results on medium sized graphs.  相似文献   

12.
It is well known that the Gaussian symplectic ensemble is defined on the space of \(n\times n\) quaternion self-dual Hermitian matrices with Gaussian random elements. There is a huge body of literature regarding this kind of matrices based on the exact known form of the density function of the eigenvalues (see Erd?s in Russ Math Surv 66(3):507–626, 2011; Erd?s in Probab Theory Relat Fields 154(1–2):341–407, 2012; Erd?s et al. in Adv Math 229(3):1435–1515, 2012; Knowles and Yin in Probab Theory Relat Fields, 155(3–4):543–582, 2013; Tao and Vu in Acta Math 206(1):127–204, 2011; Tao and Vu in Electron J Probab 16(77):2104–2121, 2011). Due to the fact that multiplication of quaternions is not commutative, few works about large-dimensional quaternion self-dual Hermitian matrices are seen without normality assumptions. As in natural, we shall get more universal results by removing the Gaussian condition. For the first step, in this paper, we prove that the empirical spectral distribution of the common quaternion self-dual Hermitian matrices tends to the semicircular law. The main tool to establish the universal result is given as a lemma in this paper as well.  相似文献   

13.
In a series of papers (J Phys A 44:365304, 2011; Complex Anal Oper Theory 7:1299–1310, 2013; J Math Pures Appl 99:165–173, 2013; J Math Pures Appl 103:522–534, 2015), we have investigated some mathematical properties of superoscillating sequences in one variable, and their persistence in time. In this paper we study the notion of superoscillation in several variables and we show how to construct examples of sequences that exhibit this property.  相似文献   

14.
In this note we consider a special case of the famous Coarea Formula whose initial proof (for functions from any Riemannian manifold of dimension 2 into \({\mathbb {R}}\)) is due to Kronrod (Uspechi Matem Nauk 5(1):24–134, 1950) and whose general proof (for Lipschitz maps between two Riemannian manifolds of dimensions n and p) is due to Federer (Am Math Soc 93:418–491, 1959). See also Maly et al. (Trans Am Math Soc 355(2):477–492, 2002), Fleming and Rishel (Arch Math 11(1):218–222, 1960) and references therein for further generalizations to Sobolev mappings and BV functions respectively. We propose two counterexamples which prove that the coarea formula that we can find in many references (for example Bérard (Spectral geometry: direct and inverse problems, Springer, 1987), Berger et al. (Le Spectre d’une Variété Riemannienne, Springer, 1971) and Gallot (Astérisque 163(164):31–91, 1988), is not valid when applied to \(C^\infty \) functions. The gap appears only for the non generic set of non Morse functions.  相似文献   

15.
The generalized sampling expansion which uses samples from a bandlimited function f and its first r derivatives was first introduced by Linden and Abramson (Inform. Contr. 3, 26–31, 1960) and it was extended in different situations by some authors through the last fifty years. The use of the generalized sampling series in approximation theory is limited because of the slow convergence. In this paper, we derive a modification of a generalized sampling involving derivatives, which is studied by Shin (Commun. Korean Math. Soc. 17, 731–740, 2002), using a Gaussian multiplier. This modification is introduced for wider classes, the class of entire functions including unbounded functions on ? and the class of analytic functions in a strip. It highly improves the convergence rate of the generalized sampling which will be of exponential order. We will show that many known results included in Sampl. Theory Signal Image Process. 9, 199–221 (2007) and Numer. Funct. Anal. Optim. 36, 419–437 (2015) are special cases of our results. Numerical examples show a rightly good agreement with our theoretical analysis.  相似文献   

16.
Surface multiresolution processing is an important subject in CAGD. It also poses many challenging problems including the design of multiresolution algorithms. Unlike images which are in general sampled on a regular square or hexagonal lattice, the meshes in surfaces processing could have an arbitrary topology, namely, they consist of not only regular vertices but also extraordinary vertices, which requires the multiresolution algorithms have high symmetry. With the idea of lifting scheme, Bertram (Computing 72(1–2):29–39, 2004) introduces a novel triangle surface multiresolution algorithm which works for both regular and extraordinary vertices. This method is also successfully used to develop multiresolution algorithms for quad surface and \(\sqrt 3\) triangle surface processing in Wang et al. (Vis Comput 22(9–11):874–884, 2006; IEEE Trans Vis Comput Graph 13(5):914–925, 2007) respectively. When considering the biorthogonality, these papers do not use the conventional \(L^2({{\rm I}\kern-.2em{\rm R}}^2)\) inner product, and they do not consider the corresponding lowpass filter, highpass filters, scaling function and wavelets. Hence, some basic properties such as smoothness and approximation power of the scaling functions and wavelets for regular vertices are unclear. On the other hand, the symmetry of subdivision masks (namely, the lowpass filters of filter banks) for surface subdivision is well studied, while the symmetry of the highpass filters for surface processing is rarely considered in the literature. In this paper we introduce the notion of 4-fold symmetry for biorthogonal filter banks. We demonstrate that 4-fold symmetric filter banks result in multiresolution algorithms with the required symmetry for quad surface processing. In addition, we provide 4-fold symmetric biorthogonal FIR filter banks and construct the associated wavelets, with both the dyadic and \(\sqrt 2\) refinements. Furthermore, we show that some filter banks constructed in this paper result in very simple multiresolution decomposition and reconstruction algorithms as those in Bertram (Computing 72(1–2):29–39, 2004) and Wang et al. (Vis Comput 22(9–11):874–884, 2006; IEEE Trans Vis Comput Graph 13(5):914–925, 2007). Our method can provide the filter banks corresponding to the multiresolution algorithms in Wang et al. (Vis Comput 22(9–11):874–884, 2006) for dyadic multiresolution quad surface processing. Therefore, the properties of the scaling functions and wavelets corresponding to those algorithms can be obtained by analyzing the corresponding filter banks.  相似文献   

17.
An interior point method (IPM) defines a search direction at each interior point of the feasible region. These search directions form a direction field, which in turn gives rise to a system of ordinary differential equations (ODEs). Thus, it is natural to define the underlying paths of the IPM as solutions of the system of ODEs. In Sim and Zhao (Math. Program. Ser. A 110:475–499, 2007), these off-central paths are shown to be well-defined analytic curves and any of their accumulation points is a solution to the given monotone semidefinite linear complementarity problem (SDLCP). In Sim and Zhao (Math. Program. Ser. A 110:475–499, 2007; J. Optim. Theory Appl. 137:11–25, 2008) and Sim (J. Optim. Theory Appl. 141:193–215, 2009), the asymptotic behavior of off-central paths corresponding to the HKM direction is studied. In particular, in Sim and Zhao (Math. Program. Ser. A 110:475–499, 2007), the authors study the asymptotic behavior of these paths for a simple example, while, in Sim and Zhao (J. Optim. Theory Appl. 137:11–25, 2008) and Sim (J. Optim. Theory Appl. 141:193–215, 2009), the asymptotic behavior of these paths for a general SDLCP is studied. In this paper, we study off-central paths corresponding to another well-known direction, the Nesterov-Todd (NT) direction. Again, we give necessary and sufficient conditions for these off-central paths to be analytic w.r.t. \(\sqrt{\mu}\) and then w.r.t. μ, at solutions of a general SDLCP. Also, as in Sim and Zhao (Math. Program. Ser. A 110:475–499, 2007), we present off-central path examples using the same SDP, whose first derivatives are likely to be unbounded as they approach the solution of the SDP. We work under the assumption that the given SDLCP satisfies a strict complementarity condition.  相似文献   

18.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

19.
This note presents a commutant lifting theorem (CLT) of Agler type for the annulus \({\mathbb A}\) . Here the relevant set of test functions are the minimal inner functions on \({\mathbb A}\) —those analytic functions on \({\mathbb A}\) which are unimodular on the boundary and have exactly two zeros in \({\mathbb A}\) —and the model space is determined by a distinguished member of the Sarason family of kernels over \({\mathbb A}\) . The ideas and constructions borrow freely from the CLT of Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) for the polydisc, and Ambrozie and Eschmeier (A commutant lifting theorem on analytic polyhedra. Topological algebras, their applications, and related topics, 83108, Banach Center Publications, vol 67. Polish Academy of Sciences, Warsaw, 2005) for the ball in \({\mathbb C^n}\) , as well as generalizations of the de Branges–Rovnyak construction like found in Agler (On the representation of certain holomorphic functions defined on a polydisc. Topics in operator theory: Ernst D. Hellinger memorial volume, operator theory: advances and applications, vol 48. Birkhäuser, Basel, pp 47–66, 1990) and Ambrozie et al. (J Oper Theory 47(2):287–302, 2002). It offers a template for extending the result in McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) to infinitely many test functions. Among the needed new ingredients is the formulation of the factorization implicit in the statement of the results in Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) and McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) in terms of certain functional Hilbert spaces of Hilbert space valued functions.  相似文献   

20.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号