首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the threedimensional parameter space. Then we show the required conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Moreover, we present exact expressions and simulations of these traveling wave solutions. The dynamical behaviors of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of nonlinear waves.  相似文献   

2.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

3.
In this Letter, we investigate the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.  相似文献   

4.
5.
In this letter, we study an integrable Camassa-Holm hierarchy whose high-frequency limit is the Camassa-Holm equation. Phase plane analysis is employed to investigate bounded traveling wave solutions. An important feature is that there exists a singular line on the phase plane. By considering the properties of the equilibrium points and the relative position of the singular line, we find that there are in total three types of phase planes. Those paths in phase planes which represented bounded solutions are discussed one-by-one. Besides solitary, peaked and periodic waves, the equations are shown to admit a new type of traveling waves, which concentrate all their energy in one point, and we name them deltons as they can be expressed as some constant multiplied by a delta function. There also exists a type of traveling waves we name periodic deltons, which concentrate their energy in periodic points. The explicit expressions for them and all the other traveling waves are given.  相似文献   

6.
In this letter, we investigate traveling wave solutions of a nonlinear wave equation with degenerate dispersion. The phase portraits of corresponding traveling wave system are given under different parametric conditions. Some periodic wave and smooth solitary wave solutions of the equation are obtained. Moreover, we find some new hyperbolic function compactons instead of well-known trigonometric function compactons by analyzing nilpotent points.  相似文献   

7.
The bifurcations of traveling wave solutions of the Broer-Kaup system are investigated and all possible exact parametric representations of the smooth and peaked solitary waves are presented.  相似文献   

8.
Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.  相似文献   

9.
In this paper, we analyze the relation between the shape of the bounded traveling wave solutions and dissipation coefficient of nonlinear wave equation with cubic term by the theory and method of planar dynamical systems. Two critical values which can characterize the scale of dissipation effect are obtained. If dissipation effect is not less than a certain critical value, the traveling wave solutions appear as kink profile; while if it is less than this critical value, they appear as damped oscillatory. All expressions of bounded traveling wave solutions are presented, including exact expressions of bell and kink profile solitary wave solutions, as well as approximate expressions of damped oscillatory solutions. For approximate damped oscillatory solution, using homogenization principle, we give its error estimate by establishing the integral equation which reflects the relations between the exact and approximate solutions. It can be seen that the error is an infinitesimal decreasing in the exponential form.  相似文献   

10.
Zakharov方程的显式行波解   总被引:14,自引:1,他引:14       下载免费PDF全文
赵长海  盛正卯 《物理学报》2004,53(6):1629-1634
借助Mathematica软件,采用双函数法和吴文俊消元法,获得了等离子体物理中的重要方程组Zakharov方程的十组行波解,其中包括包络孤波解,孤子解. 关键词: Zakharov方程 孤子解  相似文献   

11.
By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.  相似文献   

12.
徐园芬 《物理学报》2013,62(10):100202-100202
利用动力系统方法研究一维Tonks-Girardeau原子气区域中Gross-Pitaevskii (GP)方程简化模型的一些精确行波解以及这些精确行波解的动力学行为, 研究系统的参数对行波解的动力学行为的影响. 在不同的参数条件下, 获得了一维Tonks-Girardeau原子气区域中GP方程简化模型的六个行波解的精确参数表达式. 关键词: 动力系统方法 孤立波解 周期波解 扭波解  相似文献   

13.
《Physics letters. A》2019,383(36):126028
The theory of bifurcations for dynamical system is employed to construct new exact solutions of the generalized nonlinear Schrödinger equation. Firstly, the generalized nonlinear Schrödinger equation was converted into ordinary differential equation system by using traveling wave transform. Then, the system's Hamiltonian, orbits phases diagrams are found. Finally, six families of solutions are constructed by integrating along difference orbits, which consist of Jacobi elliptic function solutions, hyperbolic function solutions, trigonometric function solutions, solitary wave solutions, breaking wave solutions, and kink wave solutions.  相似文献   

14.
The Periodic Wave Solutions for Two Nonlinear Evolution Equations   总被引:14,自引:0,他引:14  
By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobi elliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.  相似文献   

15.
Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the (3+1)-dimensional Gross-Pitaevskii equation with repulsive harmonic potential. In the limit cases, the solitary wave solutions are obtained as well. We also investigate the dynamical evolution of the solitons with a time-dependent complicated potential.  相似文献   

16.
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrǒdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.  相似文献   

17.
By using the extended F-expansion method,the exact solutions,including periodic wave solutions expressed by Jaeobi elliptic functions,for (2 1)-dimensional nonlinear Schroedinger equation are derived.In the limit cases,the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.  相似文献   

18.
In this paper, the complete discrimination system for polynomial method is applied to retrieve the exact traveling wave solutions of time-fractional coupled Drinfel’d–Sokolov–Wilson equations. All of the possible exact traveling wave solutions which consist of the rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions solutions are obtained, and some of them are new solutions. Moreover, the concrete examples are presented to ensure the existences of obtained solutions. In addition, four types of representative solutions are depicted to show the nature of solutions.  相似文献   

19.
We present a theory of the existence and stability of traveling periodic and solitary space charge wave solutions to a standard rate equation model of electrical conduction in extrinsic semiconductors which includes effects of field-dependent impurity impact ionization. A nondimensional set of equations is presented in which the small parameter β = (dielectric relaxation time) / (characteristic impurity time) 1 plays a crucial role for our singular perturbation analysis. For a narrow range of wave velocities a phase plane analysis gives a set of limit cycle orbits corresponding to periodic traveling waves. while for a unique value of wave velocity we find a homoclinic orbit corresponding to a moving solitary space charge wave of the type experimentally observed in p-type germanium. A linear stability analysis reveals all waves to be unstable under current bias on the infinite one-dimensional line. Finally, we conjecture that solitary waves may be stable in samples of finite length under voltage bias.  相似文献   

20.
We report results on dispersion relations and instabilities of traveling waves in excitable systems. Experiments employ solutions of the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction confined to thin capillary tubes which create a pseudo-one-dimensional system. Theoretical analyses focus on a three-variable reaction-diffusion model that is known to reproduce qualitatively many of the experimentally observed dynamics. Using continuation methods, we show that the transition from normal, monotonic to anomalous, single-overshoot dispersion curves is due to an orbit flip bifurcation of the solitary pulse homoclinics. In the case of “wave stacking”, this anomaly induces attractive pulse interaction, slow solitary pulses, and faster wave trains. For “wave merging”, wave trains break up in the wake of the slow solitary pulse due to an instability of wave trains at small wavelength. A third case, “wave tracking” is characterized by the non-existence of solitary waves but existence of periodic wave trains. The corresponding dispersion curve is a closed curve covering a finite band of wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号