首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Synthesis of branched gold nanocrystals by a seeding growth approach is described. In this process, HAuCl4 aqueous solution was supplied stepwise to grow the gold seeds (approximately 2.5 nm) into larger nanoparticles with a highly faceted particle structure (approximately 15-20 nm in diameter). Sodium dodecyl sulfate (SDS) served as a capping agent to facilitate the formation of highly faceted nanoparticles, and ascorbic acid was used as a weak reducing agent. The highly faceted nanoparticles then transformed into branched nanocrystals (approximately 40 nm in length) by further addition of the SDS-HAuCl4 solution and ascorbic acid for particle growth. The branched nanocrystals show bipod, tripod, tetrapod, and pentapod structures and are composed of mainly (111) lattice planes. These multipods appear to grow along the twin boundaries of the initially formed highly faceted gold nanoparticles, as the twin boundaries on the pods originate from the centers of the branched nanocrystals. The concentration of ascorbate ions in the solution was found to have a profound influence on branch formation. These branched nanocrystals are stable to storage at low temperature (that is, 4 degrees C), but they may slowly evolve into a multitwinned faceted crystal structure (that is, pentagonal-shaped decahedral structure) when stored at 30 degrees C.  相似文献   

2.
For developing new excellent electrocatalysts toward methanol and oxygen, branched Au nanocrystals have been prepared in high yield by the reaction of HAuCl4 and sodium diphenylamine‐4‐sulfonate in the presence of PEG (polyethylene glycol) at room temperature. When the amount of PEG was in the range of 1–3 mL, branched Au nanocrystals were all obtained, and the amounts of sodium diphenylamine‐4‐sulfonate and HAuCl4 had no obvious effect on the morphology of gold nanocrystals. PEG molecules play an important role in the formation of branched gold nanocrystals. The nanocrystals were characterized by transmission electron microscopy (TEM), selected area electron diffraction, high‐resolution transmission electron microscopy (HRTEM) and UV‐Vis absorption spectrum. HRTEM research suggests that the tips of gold nanocrystals grow selectively in the [111] directions. The UV‐Vis absorption spectrum displays two‐separated surface plasmon resonance peaks.  相似文献   

3.
以醋酸铅为铅源,硫代乙酰胺为硫源,在表面活性剂十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)共同作用下,通过简单地调节水热反应的反应温度控制合成出球状、立方状和空心立方状PbS纳米晶。利用XRD、TEM对合成产物的结构和形貌进行了表征,发现合成的球状、立方状和空心立方状PbS纳米晶尺寸均一,直径为100 nm左右。对球状、立方状和空心立方状PbS纳米晶的形成机理进行了初探,结果表明反应温度较低时,水热反应初始阶段形成的PbS小颗粒呈球形,在表面活性剂SDS的烷基链模板和CTAB微胶束软模板共同作用下生成球状PbS纳米晶;反应温度较高时,水热反应初始阶段形成的PbS小颗粒由于自身的立方相岩盐晶体结构的影响有呈立方状趋势,在SDS和CTAB共同作用下产物堆积成空心立方体状或立方状。  相似文献   

4.
The reduction of chloroauric acid using aniline adsorbed on DNA produces highly branched dendritic gold nanoparticles with concomitant formation of polyaniline (PANI) in contrast to the formation of spherical Au nanoparticles in the absence of DNA. The conformation of DNA remains intact in the process as evident from circular dichroism (CD) spectra. The UV-Vis spectrum exhibits a broad absorption peak at 520-900 nm, for a combined effect of the gold surface plasmon and π band to localized polaron band transition of DNA-doped PANI. Both the dendritic Au-PANI-DNA and the spherical Au-PANI systems emit two peaks for excitation with radiation of 300 nm and the intensity ratio of the emission and FRET peak is higher in the dendritic Au-PANI than that in the spherical Au-PANI system. The dc-conductivity values of spherical Au-PANI and dendritic Au-PANI-DNA systems are 1.2×10(-10) and 1.7×10(-8) S/cm at 30°C, respectively.  相似文献   

5.
We investigated the influence of the reduction state of gold ions on the growth of gold nanocrystals in N,N-dimethyl formamide (DMF). While freshly prepared solutions of AuCl3 produce spherical nanocrystals, aged precursor solutions containing mainly Au+ ions and Au(0) atoms lead to various branched nanoparticles. Furthermore, we show that also the amount of the reducing and stabilisation agent tetra-n-octylammonium formate (TOAF) plays a decisive role on the shape of the nanocrystals, allowing us to grow triangular and cubic nanoparticles.  相似文献   

6.
Facile synthesis of multi‐branched gold nanostructures by using the tetrabutyl ammonium bromide (TBAB) as a capping agent is described. The reaction is carried out in a one‐step process at mild temperature. Gold nanostructures with more than six sharp branches ranging from 70 to 130 nm in length are synthesized in high yield. It is proposed that the relative weak adsorption capacity of TBAB leads to the incompletely covered gold surface and the growth of nanoparticles occurs on the uncovered gold surface, and therefore short branches appear consequently. Then positively charged TBAB layers on the gold surfaces prevent the branches from aggregating with each other which stimulates the branch growth. The prepared branched gold nanoparticles show efficient surface‐enhanced Raman scattering (SERS) properties. Low temperature (4°C) is unfavorable to the formation of multi‐branched gold nanostructures, and only thin small irregular plate‐like nanoparticles are produced. The addition of SDS in TBAB aqueous solution results in forming SDS micelles at much lower concentration of SDS (0.4 mmol/L) as compared to that in pure water, and short branched gold nanoparticles are obtained in the SDS‐TBAB system.  相似文献   

7.
A new and simple method has been developed to synthesize large quantities of highly monodisperse tetragonal zirconia nanocrystals. In this synthesis, a nonhydrolytic sol-gel reaction between zirconium(IV) isopropoxide and zirconium(IV) chloride at 340 degrees C generated 4 nm sized zirconia nanoparticles. A high-resolution transmission electron microscopic (HRTEM) image showed that the particles have a uniform particle size distribution and that they are highly crystalline. These monodisperse nanoparticles were synthesized without any size selection process. X-ray diffraction studies combined with Rietveld refinement revealed that the ZrO(2) nanocrystals are the high-temperature tetragonal phase, and very close to a cubic phase. When zirconium(IV) bromide is used as a precursor instead of zirconium chloride, zirconia nanoparticles with an average size of 2.9 nm were obtained. The UV-visible absorption spectrum of 4 nm sized zirconia nanoparticles exhibited a strong absorption starting at around 270 nm. A fluorescence spectrum with excitation at 300 nm showed a broad fluorescence band centered around 370 nm. FTIR spectra showed indication of TOPO binding on the ZrO(2) nanoparticle surface. These optical studies also suggest that the nanoparticles are of high quality in terms of narrow particle size distribution and relatively low density of surface trap states.  相似文献   

8.
It was found that potassium permanganate (KMnO(4)) could react with gold nanoparticles in a strong acid medium to generate particle size-dependent chemiluminescence (CL). For gold nanoparticles with the size of 2.6 or 6.0 nm, the reaction was fast and could produce the excited state Mn(II) with light emission around 640 nm. For gold nanoparticles larger than 6.0 nm, no light emission was observed due to a much slower reaction rate. The CL intensity was found to increase linearly with the concentration of 2.6 nm gold nanoparticles. The effects of the acid medium, concentration of KMnO(4) and presence of N(2) and O(2) were investigated. UV-Vis absorption spectra and X-ray photoelectron spectra (XPS) measured before and after the CL reaction were analyzed. A CL mechanism has been proposed suggesting that the potassium permanganate was reduced by gold nanoparticles in the strong acid medium to the excited state Mn(II), yielding light emission. The results bestow new light on the size-dependent chemical reactivities of the gold nanoparticles and on nanoparticle-induced chemiluminescence. The CL reaction was considered to be of potential use for bioanalysis applications.  相似文献   

9.
During recent years investigation on the development of eco-friendly processes for production of gold nanoparticles (GNPs) have received much attention due to hazardous effects of chemical compounds used for nanoparticle preparation. In the present study, the purified laccase from Paraconiothyrium variabile was applied for synthesis of Au nanoparticles (AuNPs) and the properties of produced nanoparticles were characterized. The UV-vis spectrum of formed AuNPs showed a peak at 530 nm related to surface plasmon absorbance of GNPs represented the formation of gold nanoparticles after 20 min incubation of HAuCl(4) (0.6 mM) in the presence of 73 U laccase at 70°C. Transmission electron microscopy (TEM) image of AuNPs showed well dispersed nanoparticles in the range of 71-266 nm as determined by the laser light scattering method. The pattern of energy dispersive X-ray (EDX) of the prepared GNPs confirmed the structure of gold nanocrystals.  相似文献   

10.
Fluoroalkyl end-capped co-oligomeric nanoparticles, which were prepared by the reaction of fluoroalkanoyl peroxide with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 1-hydroxy-5-adamantylacrylate (Ad-HAc), were applied to the preparation of novel fluorinated co-oligomeric nanocomposite-encapsulated gold nanoparticles. These fluorinated gold nanocomposites were easily prepared by the reductions of gold ions with poly(methylhydrosiloxane) (PMHS) in the presence of the corresponding fluorinated nanoparticles and tri -n-octylamine (TOA) in 1,2-dichloroethane (DE) at room temperature. These fluorinated gold nanoparticles were isolated as wine-red powders and were found to exhibit good dispersibility in a variety of traditional organic solvents such as DE, methanol, and t-butyl alcohol to afford transparent wine-red solutions. The morphology and stability of these fluorinated co-oligomeic nanocomposite-encapsulated gold nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering measurements (DLS), and UV-vis spectroscopy. DLS measurements and UV-vis spectroscopy showed that these particles are nanometer-size-controlled very fine nanoparticles (185-218 nm) that exhibit a plasmon absorption band at around 530 nm. TEM images also showed that gold nanoparticles are tightly encapsulated into fluorinated co-oligomeric nanoparticle cores. Interestingly, these fluorinated co-oligomeric nanocomposites-encapsulated gold nanoparticles were found to afford linear arrays of these fluorinated nanoparticles with increases in the feed amounts of TOA. More interestingly, these fluorinated gold nanoparticles were able to afford the extremely red-shifted plasmon absorption band at around 960 nm.  相似文献   

11.
Mesoporous silica with gold nanoparticles inside its pores was prepared by the soaking and ultrasound-induced reduction method. This new composite was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and high-resolution transmission electron microscopy (HRTEM) techniques. The results showed that nearly spherical-shaped gold nanoparticles, with mean size in diameter of 5.2 nm, are located in the pores, most of which are less than 6 nm in diameter. The ultrasonic irradiation time dependence of optical absorption for the soaked porous solid sample, as suggested by the variation in absorbance at 310 and 544 nm, indicated the reduction of Au (III) ions, and the nucleation and aggregation of gold nanoparticles within pores of mesoporous silica. Additionally, the reaction rates estimated phenomenologically by the absorbance decay at 310 nm for both the porous sample and the corresponding soaking solution presented the enhancement of the sonochemical reduction rate of Au (III) ions within pores of mesoporous silica. It is assumed that the extensive liquid-solid interfacial zones in the pores, due to the high specific surface areas and great porosity of the mesoporous solid, are the major regions where the efficient sonochemical reduction induced by the cavitation takes place. Copyright 2001 Academic Press.  相似文献   

12.
郭斌  单雯雯  罗江山  唐永建  程建平 《化学学报》2008,66(12):1435-1440
用紫外光辐照氯金酸、聚乙烯吡咯烷酮(PVP)和纳米金种子的混合溶液, 在室温下用30 min制备出尺度小于100 nm的截角三角形或六边形金纳米盘. X射线能谱和衍射分析表明粒子是以{111}面为盘状面的高纯面心立方金单晶, 红外透射光谱表明金粒子与PVP之间存在作用. 产物的可见吸收光谱表现出纳米盘的各向异性表面等离子体共振吸收峰. 不同实验条件下产物的吸收光谱分析表明: PVP起还原剂和包覆剂的作用; 高强度紫外光加速了反应进行; 种子对反应具有催化作用; 种子的加入量有最佳值, 在该值下纳米盘平均尺度最大(达80 nm), 吸收谱上的面内偶极共振峰位于950 nm处; 种子的加入量超过该值时, 纳米盘尺度变小, 面内偶极共振峰发生蓝移.  相似文献   

13.
A direct process for preparing contiguous gold shells (15-25 nm thick) over amorphous silica spheres (200 nm) is described. In this method, gold seeds are synthesized from HAuCl(4) in a dilute NaOH solution using deposition-precipitation with subsequent metallization by sodium borohydride (NaBH(4)). The ease of dispersing gold nanocrystals on spheres of bare silica and spheres after grafting with ammonia was studied as a function of pH (4-8), reaction temperature (65-96 degrees C), and time (5-30 min). Additional parameters requiring optimization included the quantity of NaBH4 and the HAuCl(4) in K(2)CO(3) solution to silica volume ratio. The evolution of gold nanocrystal growth was monitored by transmission electron microscopy, and the bathochromic shift of ultraviolet-visible absorption was correlated with shell perfection and thickness.  相似文献   

14.
A facile bottom-up 'green' and rapid synthetic route using Murraya Koenigii leaf extract as reducing and stabilizing agent produced silver nanoparticles at ambient conditions and gold nanoparticles at 373 K. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. This method allows the synthesis of well-dispersed silver and gold nanoparticles having size ~10 nm and ~20 nm, respectively. Silver nanoparticles with size ~10 nm having symmetric SPR band centered at 411 nm is obtained within 5 min of addition of the extract to the solution of AgNO3 at room temperature. Nearly spherical gold nanoparticles having size ~20 nm with SPR at 532 nm is obtained on adding the leaf extract to the boiling solution of HAuCl4. Crystallinity of the nanoparticles is confirmed from the high-resolution TEM images, selected area electron diffraction (SAED) and XRD patterns. From the FTIR spectra it is found that the biomolecules responsible for capping are different in gold and silver nanoparticles. A comparison of the present work with the author's earlier reports on biosynthesis is also included.  相似文献   

15.
In this study, we present a simple and eco-friendly method for extracellular biosynthesis of gold nanoparticles by Streptomyces sp. ERI-3 cell-free supernatant. The research was also aimed to evaluate the effects of different reaction parameters including incubation temperature, reaction time, HAuCl4 concentration and pH on gold nanoparticles production. The UV?CVis spectroscopy was used to monitor the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized with XRD, TEM, and SEM. The average particle size ranged from 10 to 30?nm with spherical shape at optimum conditions.  相似文献   

16.
Liquid phase gold nanoparticles with different diameters and colors can be prepared using sodium citrate reduction method by controlling the amounts of sodium citrate. The mean diameters of gold nanoparticles are measured by transmission electron microscope (TEM). Gold nanoparticles with different sizes have specific absorption spectra. When the diameters of nanoparticles is between 12 and 41 nm, the maximum absorption peaks locate at 520-530 nm and there are red shifts gradually with the increase of diameters of gold nanoparticles. And when the size of gold nanoparticle is constant, the absorbance is proportional to the concentration of gold. Obvious resonance Rayleigh scattering (RRS) and the resonance non-linear scattering such as second-order scattering (SOS) and frequency-doubling scattering (FDS) appear at the same time as well, and the maximum scattering peaks are located at 286 nm (RRS), 480 nm (SOS) and 310 nm (FDS), respectively. When the concentration of gold is constant, absorbance and the intensities of RRS, SOS and FDS (I(RRS), I(SOS) and I(FDS)) have linear relationships with the diameters of gold nanoparticles. When the diameter of gold nanoparticle is constant, the absorbance and I(RRS), I(SOS), I(FDS) are directly proportional to the concentrations of gold nanoparticles. Therefore, it is very useful for studying the liquid phase gold nanoparticles by investigating the absorption, RRS, SOS and FDS spectra.  相似文献   

17.
Growth of gold nanorods (AuNRs) by photochemical reduction of HAuCl4 in a micelle solution of hexadecyltrimethylammonium bromide (CTAB) and tetraoctylammonium bromide (TOAB) is studied. The effects of 300 and 254 nm UV light sources and their photon flux on the anisotropic growth of gold nanoparticles are investigated by controlling duration of irradiation and the number of lamps within a photochemical reactor. The resulting AuNRs were characterized by absorption spectroscopy, FTIR, and TEM. Experimental results indicate that a higher density of longer colloidal AuNRs form by increasing the number of incident photons (lamps) at 300 nm while the 254 nm lights produce a lower yield of shorter AuNRs. The yield of AuNRs also depends on the duration of irradiation which was found to be 6.00 h for 300 nm and 5.00 h for 254 nm radiation. Acetone is found to play a major role in the synthesis of AuNRs. Two mechanisms are proposed for the synthesis of Au nanoparticles in the presence and absence of acetone. Irradiation of samples for an excess time produces a lower concentration of AuNRs and a higher yield of spherical particles. This effect is attributed to atom-by-atom dissolution of AuNRs into Au-spherical particles.  相似文献   

18.
大粒径单分散金纳米粒子的水相合成   总被引:21,自引:0,他引:21  
近年来,随着纳米科技的兴起,纳米尺度的金颗粒以其独特的光学、电学性质[1-3]在许多领域表现出潜在的应用价值,引起了人们浓厚的研究兴趣[4-7].迄今为止,已有多种制备金纳米粒子的方法见诸报导.制备简便、单分散性好、粒径可控,一直是各种方法追求的目标....  相似文献   

19.
A sheared lamellar phase has been used as a nanoreactor for the synthesis of gold nanoparticles by radiolysis and by a photochemical approach. A gold salt solution (KAuCl4, 10(-2) M) is introduced into the aqueous compartments between the lipid-based bilayers. Gold nanoparticles grow within the lamellar phase as shown by TEM analysis and X-ray diffraction, limiting the particle size. Homodisperse, 2.4- and 5.9-nm-sized, spherical nanoparticles are produced by gamma irradiation and UV irradiation, respectively. When produced by radiolysis, they are perfectly aligned along the lamellae. Their UV-vis spectra display a maximum at 565 nm suggesting that nanoparticles are coupled by dipole-dipole interactions within the lamellar phase.  相似文献   

20.
Unique nanostructure materials with highly ordered spherical aggregates have been obtained by self-organization of single CdTe nanocrystals using gold nanoparticles as seeds, and a red shift of the photoluminescence peak was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号