首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, multi-wall carbon nanotubes (MWCNTs) as adsorbents of solid-phase extraction are attractive because they can be used for enrichment of organic compounds and metal ions at trace levels. In this study, we use the carboxyl modified multi-wall carbon nanotubes (CMMWCNTs) as adsorbents of solid-phase extraction for extraction of linear alkylbenzene sulfonates (LAS), which are widely used anion surfactant with different homologues, and detected by HPLC-UV. The effect of eluent and its volume, sample pH and flow rate, sample volume and the ultrasonic time of sample, the content of the electrolyte (NaCl) were investigated and optimized. The detection limit for LAS homologues was 0.02-0.03 μg L−1 with R.S.D. (n = 6) ranging from 2.04 to 10.03%. The recoveries of LAS homologues in the spiked environmental water samples ranged from 84.8 to 106.1%. The proposed method has been applied successfully to the analysis of LAS in aqueous environmental samples, which demonstrates that CMMWCNTs-based solid-phase extraction is a precision and convenient enrichment method and can be used for analysis of LAS homologues in water samples.  相似文献   

2.
Analytical methods have been developed that allow for the determination of antiphlogistics, lipid regulators, the antiepileptic carbamazepine, cytostatic agents, the psychiatric drug diazepam and iodinated contrast media (ICM) as well as two major polycyclic musk fragrances HHCB (galaxolide) and AHTN (tonalide) in activated and digested sludge. The procedures consist of ultrasonic solvent extraction (USE) using methanol/acetone or pressurized liquid extraction (PLE) using 100% methanol. Clean-up was performed with C18ec material and silica gel followed by LC tandem MS (electrospray or atmospheric pressure chemical ionization) detection for pharmaceuticals and iodinated contrast media as well as GC/MS in the SIM mode for musk fragrances. Absolute recoveries from spiked activated sludge in general ranged from 88+/-4 to 119+/-20% for ICM and were 78+/-15 and 87+/-10% for the AHTN and HHCB, respectively. For the pharmaceuticals, absolute recoveries in activated sludge ranged between 43 and 78%. Subsequently, compensation of losses was carried out by using surrogate standards (acidic pharmaceuticals: fenoprop, neutral pharmaceuticals: dihydro-carbamazepine, musk fragrances: AHTN-D3). With one exception the recoveries were also adequate in digested sludge ranging from 43% to 120%.  相似文献   

3.
A novel analytical method has been developed for the determination of 4-tert.-octylphenol (OP) and 4-nonylphenol (NP) in laboratory animal feed samples, which involves stir bar sorptive extraction (SBSE) followed by liquid desorption (LD) and column-switching liquid chromatography-mass spectrometry (CS-LC-MS) with solid-phase extraction (SPE). The method required correction by stable isotopically labeled surrogate standards, deuterium 4-tert.-octylphenol (OP-d) and [2H5] 4-(1-methyl)octylphenol (m-OP-d5). A feed sample was homogenized with methanol by ultrasonication. After centrifugation, the supernatant was subjected to extraction for 120 min at room temperature (25 degrees C) using a stir bar coated with polydimethylsiloxane. After the extraction, the analyte was desorbed from the stir bar by LD using acetonitrile. Then, the liquid sample was analyzed by CS-LC-MS with SPE. The average recoveries from laboratory feed samples spiked with OP and NP at 20 ng g(-1) were 99.5 and 103.8%, respectively, with correction using the added surrogate standards. The limits of quantification were 1 ng g(-1) for OP and 5 ng g(-1) for NP in feed sample. The measurement of OP and NP in commercial laboratory animal feed samples resulted in the detection of sub ng g(-1) NP  相似文献   

4.
Methods have been developed for the determination of bisphenol A (BPA) residues in municipal sewage and sludge samples. BPA in wastewater samples was enriched with a C18 solid-phase extraction cartridge, eluted with acetone, and converted to the pentafluoropropionyl derivative. For sludge samples, BPA was acetylated and extracted with supercritical carbon dioxide. In both cases, BPA-d16 was used as a surrogate to monitor extraction efficiency. Final analyses of derivatized sample extracts were performed by gas chromatography/mass spectrometry operating in the electron impact mode. For water samples, mean recoveries and standard deviations were 89 +/- 6, 94 +/- 4, and 85 +/- 7% at fortification levels of 1, 0.1, and 0.025 microg/L, respectively, with a method detection limit of 0.006 microg/L. For solid waste samples, mean recoveries and standard deviations were 93 +/- 5 and 92 +/- 6% at fortification levels of 2.5 and 0.25 microg/g, respectively, and the method detection limit was 0.05 microg/g. For the Canadian samples under investigation, concentrations of BPA ranged from 49.9 to 0.031 microg/L in sewage influent and effluent, and from 36.7 to 0.104 microg/g in sludge.  相似文献   

5.
A novel method based on column-switching high-performance liquid chromatography-electrospray mass spectrometry (LC-MS) coupled with an on-line extraction column containing conjugated avidin has been developed for direct injection analysis of di(2-ethylhexyl) phthalate (DEHP) and its metabolite, mono(2-ethylhexyl) phthalate (MEHP), in blood samples. The sample preparation for on-line extraction involved the mixing of blood samples with internal standards, DEHP-d(4) and MEHP-d(4), in LC glass vials. A linear response was found for column-switching LC-MS when tests were conducted within the validated range of 25 to 1000 ng mL(-1) for DEHP and 5 to 1000 ng mL(-1) for MEHP, with correlation coefficients (r) greater than 0.999. In addition, the recoveries of DEHP and MEHP from human plasma were calculated by using this method with on-line extraction, yielding recoveries of up to 91.2% (RSD<5%). We measured the background levels of DEHP and MEHP in six human plasma samples from healthy volunteers and three fetal bovine serum samples for cell-line culture. DEHP and MEHP were not detected in all human plasma samples (N.D. is <25 ng mL(-1) for DEHP, and N.D. is <5.0 ng mL(-1) for MEHP). In contrast, high DEHP contamination of commercially available fetal bovine serum samples was found by this method.  相似文献   

6.
A method for molecularly imprinted solid-phase extraction (MISPE) of the fungicide pyrimethanil from wine samples has been investigated. The molecular imprinted polymer was obtained by iniferter-mediated grafting on porous chloromethylated polystyrene beads, using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The imprinted beads were evaluated for use as a solid-phase extraction sorbent, in order to develop the extraction protocol in aqueous standards and red wine samples. The optimised extraction protocol resulted in a reliable MISPE method suitable for HPLC analysis (stationary phase: Cromolith Performance C18 column, 100 mm x 4.6 mm; mobile phase: acetonitrile-water (3:2, v/v), flow-rate: 1.00 ml/min; detection 270 nm). It was selective for pyrimethanil and the related pyrimidinic fungicides cyprodinil and mepanipyrim, while the non-pyrimidinic fungicides benalaxyl, chlozolinate, furalaxyl, iprodione, metalaxyl, nuarimol, procymidone and vinclozolin were not extracted. Recoveries performed on a wine matrix spiked with pyrimethanil at three different concentration levels were reproducible and were in good agreement with the recoveries performed on buffer, coming out between 80 and 90% (85+/-7.0% at 0.50 microg/ml, 79+/-1.6% at 2.0 microg/ml and 87+/-5.6% at 20 microg/ml). Preconcentration and quantitative extraction of pyrimethanil from wine samples was shown to be feasible down to 0.1 microg/ml.  相似文献   

7.
The feasibility of different extraction procedures was tested and compared for the determination of 12 organophosphorus and carbamates insecticides in honey samples. In this sense, once the samples were pre-treated - essentially dissolved in hot water by stirring - and before they could be analyzed by liquid chromatography-ion trap-second stage mass spectrometry (LC-MS(2)), four different approaches were studied for the extraction step: QuEChERS, solid-phase extraction (SPE), pressurized liquid extraction (PLE) and solid-phase microextraction (SPME). The main aim of this work was to maximise the sensitivity of pesticides and to minimise the presence of interfering compounds in the extract. All pesticides were linear in the range from CC(β) to 1000× CC(β) for the four extraction methods (three orders of magnitude). Detection capabilities (CC(β)) were 0.024-1.155 mg kg(-1) with QuEChERS, 0.010-0.646 mg kg(-1) with SPE, 0.007-0.595 mg kg(-1) with PLE, and 0.001-0.060 mg kg(-1) with SPME. All the target compounds could be recovered by any of the methods, at a CC(β) fortification level ranged from 28 to 90% for the SPME. In comparison, the PLE method was the most efficient extraction method with recoveries from 82 to 104%. It was followed by the QuEChERS method with recoveries between 78 and 101% and the SPE method with recoveries between 72 and 100%. The repeatability expressed as relative standard deviation (RSDs) was below 20% for all the pesticides by any of the tested extraction methods. Results obtained applying the four extraction techniques to real honey samples are analogous.  相似文献   

8.
A reversed-phase ion-pair liquid chromatographic analysis combined with a solid-phase extraction clean-up method is used to assess the quantity of diphacinone residue found in invertebrates. Three invertebrate species are exposed to commercially available diphacinone-fortified bait used for rat control. The invertebrate samples are collected, frozen, and shipped to the laboratory. The samples are homogenized after cryogenic freezing. A portion of the homogenized samples are extracted with acidified chloroform-acetone, followed by cleanup with a silica solid-phase extraction column. Diphacinone is detected by UV absorption at 325 nm after separation by the chromatographic system. The method limit of detection (MLOD) for snail and slug samples averaged 0.055 and 0.066 mg/kg, respectively. Diphacinone residues in snail tissue ranges from 0.83 to 2.5 mg/kg for Oxychilus spp. The mean recoveries from snails at 0.20 and 2.0 are 97 +/- 21% and 84 +/- 6%. Diphacinone residues in slug tissue ranges from 1.3 to 4.0 mg/kg for Deroceras laeve and < MLOD to 1.8 mg/kg for Limax maximus, respectively. The mean recoveries from slugs at 0.20 and 2.0 mg/kg are 91% +/- 15% and 86% +/- 5%.  相似文献   

9.
A new method for determining aflatoxin M1 (AFM1) in cheese by liquid chromatography-tandem mass spectrometry has been developed. Two methodologies were compared for sample extraction. The first one involves sample extraction with dichloromethane for hard, aged cheese or acetone for fresh cheese and includes a preliminary matrix solid-phase dispersion-extraction step before solid-phase extraction (SPE) clean-up by a Carbograph-4 cartridge. The second method uses a water/methanol solution (90:10, v/v) extraction at 150 degrees C before clean-up. The average recoveries of AFM1 from samples spiked at levels of 0.25-0.45 microg/kg, were 81-92% and the precision (RSD) ranged from 3 to 7% with the first method, whilst the average recoveries were 79-84%, and RSD ranged from 7 to 15% for the second method. Due to different matrix effect, the quantification limits were 0.019-0.025 microg/kg in the first case and 0.048-0.143 microg/kg in the second one, depending on cheese typology.  相似文献   

10.
Solid-phase extraction (SPE) procedure on octadecylsilica (C18) was developed for accumulation of volatile compounds from grape distillates. The procedure was optimised for final analysis by capillary gas chromatography. At mass concentrations in model solutions ranging from 0.1 to 50 mg/l solid-phase extraction recoveries of all analytes ranged from 69% for 2-phenylethanol to 102% for capric acid, with RSD values from 2 to 9%. SPE recoveries of internal standards to be added in the sample solution prior to extraction, higher alcohols 2-ethyl-1-hexanol and 1-undecanol, were 97 and 93%, respectively, with RSD values of 3%. Detection limits of analyzed compounds in model solutions ranged from 0.011 mg/l for isoamyl acetate to 0.037 mg/l for caproic acid. Method efficiency was tested in relation to acetic acid content, volume fraction of ethanol and possible matrix effects. A significant influence of matrix on SPE efficiency for geraniol, cis-2-hexen-1-ol and cis-3-hexen-1-ol was detected. For the same reason, 2-phenylethanol could not be determined by developed SPE method in samples of grape distillates. The developed solid-phase extraction method was successfully applied to determine the differences in volatile compound content in different grape distillates produced by the distillation of crushed, pressed and fermented grapes.  相似文献   

11.
This study is the first thorough method optimisation for accelerated solvent extraction (ASE) of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from chemically dried compost. For PCBs, optimised solvent composition, temperature, pressure, number of static cycles, duration, and flush volume were as follows: toluene/acetone 1?:?3 (v/v), 120°C, 2000?psi, 3?×?5?min, and 50%, respectively. Limits of quantification and method precision were between 0.16 and 2.46?µg?kg?1 dw and 6–17% respectively for individual PCBs. Absolute recoveries of isotope-labelled extraction standards used for each of the analytes ranged from 65 to 105% and relative recoveries were between 85 and 99%. The method proofed to be robust and was successfully applied to different compost samples.

The optimisation of PAHs extraction was performed and resulted in the following conditions: solvent: hexane/acetone 1/3 (v:v), temperature: 140°C, pressure: 1500?psi, extraction time: 3?×?5?min, and 50% flush volume. Limits of detection and method precision for individual PAHs were between 1.1 and 37.2?µg?kg?1?dw and 12–34% respectively. Absolute and relative recoveries ranged from 24 to 68% and from 85 to 99%, respectively. Optimal extraction conditions for PAHs were more difficult to determine due to the inhomogeneous distribution of PAHs in samples. However, the method appeared to be feasible and suggestions for further improvements are presented.  相似文献   

12.
Gas chromatography with electron capture detection (GC-ECD) is a highly explosive-sensitive analytical technique. However, its application to the analysis of sediment extracts is hampered by the presence of numerous endogenous interferences. In the present study, solid-phase microextraction (SPME) was used both as a purification technique for sediment extracts and as an extraction technique for water samples prior to analysis by GC-ECD. SPME/GC-ECD coupling was optimized and applied to the trace analysis of nine explosives including nitroaromatics and RDX in real seawater and marine sediment samples. Addition of a high concentration of salt (30%, w/v) in the aqueous medium and use of a carbowax/divinylbenzene (CW/DVB) coating led to optimal extraction efficiencies. Method detection limits (MDLs) ranged from 0.05 to 0.81 microg/L in water and from 1 to 9 microg/kg in dry sediment. Except for RDX, spike recoveries in seawater were satisfactory (89-147%) when samples were fortified at 2 microg/L of each analyte. Spike recoveries from dry sediment fortified at 10 microg/kg of each analyte gave lower recoveries but these could also be due to degradation in the matrix. With a smaller volume of aqueous sample required compared to solid-phase extraction (SPE), SPME is an attractive method for the analysis of limited volumes of sediment pore-water. Moreover, the use of SPME eliminated interferences present in sediment extracts thus allowing the detection of the target analytes that were otherwise difficult to detect by direct injection.  相似文献   

13.
The automated determination of amifloxacin and two of its principal metabolites in human plasma and urine by column-switching high-performance liquid chromatography is described. Plasma or urine samples, diluted 1:1 with 0.5 M sodium citrate buffer pH 2.5, were directly injected onto a cation-exchange pre-column. Following a 2.0-min wash of the pre-column with water at a flow-rate of 1.1 ml/min, the effluent from the pre-column was directed to the analytical column by a column-switching device. The precision of the plasma and urine methods ranged from a +/- 1.9 to +/- 3.6% for all compounds. The accuracies of the methods were within a range of -3.3% to 6.4% of the nominal values for all compounds. Linear responses were observed for all the standards in the range 0.10-5.0 micrograms/ml for plasma and 0.50-100 micrograms/ml for urine for all three compounds. The minimum quantifiable levels were 0.10 and 0.50 micrograms/ml for plasma and urine, respectively. The analytical methods may be used to quantify amifloxacin and the piperazinyl-N-desmethyl and piperazinyl-N-oxide metabolites in plasma and urine samples obtained from humans, monkeys, dogs and rats.  相似文献   

14.
A fully automated analytical method was developed for the online in situ analysis of selected semi-volatile organic compounds in water. The method used a large-volume injection/gas chromatography/mass spectrometry coupled with a fully automated microscale solid-phase extraction technique, which was based on x-y-z robotic techniques. Water samples were extracted by using a 96-well solid-phase extraction plate. For most analytes included in this study, the obtained linear calibrations ranged from 0.05 to 5.0 microg/L with correlation coefficients of 0.996-1.000, the method detection limits were less than 0.1 microg/L, and the relative recoveries were in the range of 70-120% with a relative standard deviation of less than 15% for fortified reagent water samples. The applications to chlorinated tap water, well water, and river water have been validated. The obtained results were similar to those resulting from fortified reagent water samples for all analytes except metribuzin, bromacil, aldrin, and methoxychlor. Matrix effects were observed for these analytes. In general, this fully automated analytical method was rugged, reliable, and easy to operate, and was capable of providing real-time data to water treatment and distribution systems as well as water reservation and protection systems. In addition, the method could reduce the analytical costs associated with sample collection, transportation, storage, and preparation.  相似文献   

15.
Different extraction methods were evaluated for the determination of fifteen organochlorine pesticides (OCPs) in water and sediments. Liquid-liquid extraction (LLE) was evaluated for the pesticides analyses in water while Soxhlet extraction (SE) and microwave assisted extraction (MAE) methods were compared in sediment. Of all the extracting solvents used, dichloromethane gave the best results. Percentage recoveries ranged from 71.03 +/- 8.15 (dieldrin) to 101.25 +/- 2.17% [a-benzenehexachloride (alpha-BHC)] in water with LLE. In sediments the percentage recoveries with Soxhlet extraction method varied between 88.22 +/- 7.85 (endrin) and 109.63 +/- 5.10% (beta-BHC) and ranged from 74.11 +/- 9.82 (2,4 DDT) to 97.50 +/- 4.56% (alpha-BHC) with MAE. The limits of detection for the OCPs ranged from 5.5 to 20.6 ng/l and between 0.6 and 2.1 ng/g. respectively. The LLE and the SE methods were applied to water and sediments samples, respectively, from marine and freshwater sources in the Eastern Cape Province of South Africa that receive runoffs from agricultural lands and effluents from industries. The levels of OCPs ranged from 5.5 (2,4-DDD) to 450 +/- 0.10 ng/l (beta-BHC) in water samples and from 0.6 (aldrin and 2,4-DDD) to 184 +/- 0.12 ng/g (beta-BHC) in sediments for triplicate analyses. Some endocrine disrupting OCPs such as DDT, DDE, heptachlor, endosulphan and the chlordanes were detected.  相似文献   

16.
A multiresidue method was developed and validated to screen bovine urine samples for 10 beta-2-adrenergic agonistic drugs--brombuterol, cimaterol, clenbuterol, clenpenterol, isoxsuprine, mabuterol, ractopamine, ritodrine, salbutamol, and tulobuterol--at the 2 microg/L level. The method is also quantitative in the range of 1 to 4 microg/L for all analytes except salbutamol. The procedure uses enzymatic digestion, liquid-liquid extraction, and cleanup on solid-phase extraction columns, followed by detection using a liquid chromatograph-tandem quadrupole mass spectrometer operated in the positive-ion atmospheric pressure chemical ionization multiple-reaction monitoring mode. Method validation included assessment of recoveries, repeatabilities, linearity of responses, decision limits, and detection capabilities. Overall average recoveries ranged from 70-91%; recoveries were generally lower for salbutamol. The decision limits ranged from 0.4-1.0 microg/L, and detection capabilities from 0.6-1.7 microg/L.  相似文献   

17.
An analytical HPLC method for the simultaneous determination of eight sulfonamides in swine wastewater was developed. The samples were collected from three states in Malaysia. Sample clean up was carried out by employing solid-phase extraction using a 60 mg Oasis HLB (Waters) cartridge with 3 ml reservoir. The HPLC column used was Supelcosil C18 (250 mm x 4.6mm I.D.) and elution was carried out using gradient mode. The mobile phases used were acetonitrile and 0.5% acetic acid in purified water. Antibiotics were detected using UV absorbance at 272 nm. Recoveries obtained for sulphanilamide ranged from 31.9+/-5.1% to 36.2+/-1.0%, while recoveries for other sulfa drugs studied were from 91.9+/-5.0% to 106.0+/-1.1%. The limit of quantitation (LOQ) for sulfamerazine, sulfamethazine and sulfamethoxypyridazine was 7.5 ng/L, while the LOQ for the other studied antibiotics was 5.0 ng/L. The method was used to analyse sulfonamides in wastewater collected from selected Malaysian swine facilities.  相似文献   

18.
Trace levels analysisbenzalkonium chlorides (BAKs) in river water and wastewater treatment plants (WWTP) effluents were determined by capillary electrophoresis (CE) following solid‐phase extraction (SPE) and salting‐out extraction. Salting‐out extraction using an appropriate ratio of sodium chloride (NaCl) and acetonitrile (ACN) mixed with concentrated SPE elutant was capable of providing more than 500‐fold enhancement in detection sensitivity. The ratios of ACN and NaCl for salting‐out extraction were investigated and optimized. Matrix interference was eliminated by salting‐out extraction. Limits of quantitation of BAK homologues were achieved at 0.1 μg/L in 250 mL water samples. Recoveries of BAKs in various spiked water samples ranged from 70% to 84% with relative standard deviation (RSD) less than 9%. Trace amounts of total BAKs were detected in river water and WWTP effluent samples ranging from 27 to 145 μg/L at the first time by CE.  相似文献   

19.
Legotte PA  Rosa WC  Sutton DC 《Talanta》1980,27(1):39-44
A method for determining cadmium and lead in urine and other biological samples by graphite-furnace atomic-absorption spectrometry is reported. Samples were analysed after wet or dry ashing and without extraction or matrix-modification techniques, in laminar-flow clean-room; negligible blank contributions were found. Matrix interference effects were observed only for lead and were resolved by the method of standard additions. Five NBS biological reference materials were used as internal quality-control standards. The urinary levels for non-exposed volunteers ranged from 0.16 +/- 0.01 to 1.65 +/- 0.20 and from 6 +/- 1 to 31 +/- 6 ng/ml for cadmium and lead, respectively; this corresponds to 0.15 +/- 0.02 to 2.01 +/- 0.16 and 7 +/- 1 to 31 +/- 3 mug/day. The average relative standard deviation for 60 urine samples was 10% for cadmium and 13% for lead.  相似文献   

20.
An automated system has been developed for the determination of trace tetracycline antibiotics (TCs) in egg samples, based on online molecularly imprinted solid-phase extraction (MISPE) coupling with high-performance liquid chromatography (HPLC). Oxytetracycline and chlortetracycline were chosen as mixed templates to synthesize highly selective molecularly imprinted polymers for online extraction. Under the optimal online MISPE-HPLC condition, 10 mL egg samples were injected into the MISPE column and then the matrix was washed out. By rotating the switching valve, TCs were transferred to the analytical column and then separated by HPLC. Because sample pretreatment and chromatographic separation were carried out simultaneously, the whole analytical time (18 min) was significantly shortened compared with conventional offline techniques. The detection limits ranged from 0.8 to 1.3 ng/g. The enhancement factors were in the range of 159-410. The spiked recoveries of TCs in real egg samples ranged from 91.6 to 107.6% and the relative standard deviations (RSDs) were not higher than 4.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号