首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The title compounds, trans‐diaquabis(nitrato‐κO)bis(pyridine‐4‐carboxamide‐κN1)copper(II), [Cu(NO3)2(C6H6N2O)2(H2O)2], (I), and trans‐diaquatetrakis(pyridine‐4‐carboxamide‐κN1)copper(II) bis(perchlorate), [Cu(C6H6N2O)4(H2O)2](ClO4)2, (II), are composed of mononuclear coordination entities involving CuII ions and isonicotinamide. In (I), the centrosymmetric tetragonally distorted octahedral copper(II) environment contains trans‐related isonicotinamide and water molecules in the equatorial plane and two nitrate ions occupying the axial sites. In (II), the equatorial plane of the C2‐symmetric distorted octahedron is built up of four isonicotinamide ligands, while water molecules occupy the axial positions. The complex molecules of (I) and (II) are linked into three‐dimensional supramolecular frameworks by O—H...O and N—H...O hydrogen bonds. The nitrate and perchlorate ions are building blocks that disturb the robust R22(8) amide supramolecular motif commonly found in crystal structures of copper–isonicotinamide complexes.  相似文献   

2.
Porphyrins and metalloporphyrins can generally show attractive structural motifs and interesting properties. A new copper porphyrin, namely poly[[μ‐chlorido‐[μ5‐5,10,15,20‐tetrakis(pyridin‐4‐yl)‐21H,23H‐porphine]tricopper(I)] [aquadichloridocopper(II)]], {[Cu3(C40H24N8)Cl][CuCl2(H2O)]}n ( 1 ), was synthesized by the self‐assembly of copper chloride with 5,10,15,20‐tetrakis(pyridin‐4‐yl)‐21H,23H‐porphine under solvothermal conditions. The structure of this copper porphyrin was characterized by single‐crystal X‐ray crystallography and elemental analysis. The porphyrin macrocycle shows a distorted saddle geometry, with the four pyrrole rings slightly distorted in an alternating mode either upwards or downwards. The copper ions show three‐coordinated triangular and four‐coordinated square‐planar geometries. Every copper–porphyrin unit connects to 12 others via four μ4‐bridging Cu2Cl moieties to complete the three‐dimensional framework of compound 1 , with isolated CuCl2(H2O) units located in the voids. This copper porphyrin displays a red photoluminescence. Electrochemical measurements showed that compound 1 has two redox waves (E1/2 = ?160 and 91 mV).  相似文献   

3.
In the structure of trans‐bis(ethanol‐κO)tetrakis(1H‐imidazole‐κN3)copper(II) bis[μ‐N‐(2‐oxidobenzylidene)‐D,L‐glutamato]‐κ4O1,N,O2′:O2′4O2′:O1,N,O2′‐bis[(1H‐imidazole‐κN3)cuprate(II)], [Cu(C3H4N2)4(C2H6O)2][Cu2(C15H14N3O5)2], both ions are located on centres of inversion. The cation is mononuclear, showing a distorted octahedral coordination, while the anion is a binuclear centrosymmetric dimer with a square‐pyramidal copper(II) coordination. An extensive three‐dimensional hydrogen‐bonding network is formed between the ions. According to B3LYP/6–31G* calculations, the two equivalent components of the anion are in doublet states (spin density located mostly on CuII ions) and are coupled as a triplet, with only marginal preference over an open‐shell singlet.  相似文献   

4.
Three heterometallic supramolecular complexes [Cu2(pn)4(Mo(CN)8)·4H2O] (pn = diaminopropane) ( 1 ), [Cu2(pn)4(W(CN)8)·4H2O] ( 2 ) and [Cu2(1,2‐pn)4(H2O) (W(CN)8)·3H2O] ( 3 ) have been synthesized and structurally characterized by single‐crystal X‐ray diffraction studies. Complexes 1 – 3 exhibit three different networks. In 1 , the copper(II) ion is pentacoordinate with a distorted square‐pyramidal arrangement and the network is formed by the incorporation of coordinative linkage between the μ2 bridge of [Mo(CN)8]4– and copper(II) ions and hydrogen‐bonding interactions. In 2 , the copper(II) ion exhibits a distorted square‐pyramidal arrangement and the network is formed by the hydrogen bonded trinuclear complexesof [Cu2(pn)2(W(CN)8)]. In 3 , the copper(II) ions show twodifferent distorted octahedral arrangements. The network structure of 3 is formed by the hydrogen‐bonded complex chains of [Cu2(1,2‐pn)2(W(CN)8)].  相似文献   

5.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

6.
The structures of dichloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}copper(II), [CuCl2(C12H12N4)], and di‐μ‐chloro‐bis(chloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}­cadmium(II)), [Cd2Cl4(C12H12N4)2], show that these compounds have the structural formula [ML(Cl)2]n, where L is 2‐[(5‐methylpyra­zolyl)methyl]benzimidazole. When M is copper, the complex is a monomer (n = 1), with a tetrahedral coordination for the Cu atom. When M is cadmium (n = 2), the complex lies about an inversion centre giving rise to a centrosymmetric dimer in which the Cd atoms are bridged by two chloride ions and are pentacoordinated.  相似文献   

7.
The title compounds, [CuFe2(C5H5)2(C9H8O2)2], (I), and [CuFe4(C5H5)4(C13H9O2)2], (II), are four‐coordinate square‐planar copper(II) complexes with two bidentate 1‐ferrocenylbutane‐1,3‐dionate or 1,3‐diferrocenylpropane‐1,3‐dionate ligands, respectively. The copper ion in (I) lies on an inversion centre, with one‐half of the mol­ecule in the asymmetric unit, while in (II), there are two independent half mol­ecules in the asymmetric unit, with the copper ions also situated on inversion centres. The ferrocene substituents in (I) are in an anti arrangement. The mol­ecules assemble in the crystal structure in layers with ferrocene groups at the surface. The pairs of ferrocene substituents on each ligand in complex (II) are syn and these adopt an anti arrangement with respect to the pair on the other diketonate ligand. As found in (I), complexes assemble in a layered structure with ferrocene‐coated surfaces.  相似文献   

8.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

9.
The title compounds, bis­(pyridine‐2,6‐di­carboxyl­ato‐N,O,O′)copper(II) monohydrate, [Cu(C7H4NO4)2]·H2O, andbis(pyridine‐2,6‐dicarboxylato‐N,O,O′)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O, have distorted octahedral geometries about the metal centres. Both metal ions are bonded to four O atoms and two pyridyl‐N atoms from the two terdentate ligand mol­ecules, which are nearly perpendicular to each other. The copper(II) complex has twofold crystallographic symmetry and contains two different ligand mol­ecules, one of which is neutral and another doubly ionized. In contrast, the zinc(II) complex contains two identical singly ionized ligand mol­ecules. Both crystal structures are stabilized by O—H?O intermolecular hydrogen bonds between the complex and the water mol­ecules.  相似文献   

10.
The organic ligands 4‐methyl‐1H‐imidazole and 2‐ethyl‐4‐methyl‐1H‐imidazole react with Cu(CF3SO3)2·6H2O to give tetrakis(5‐methyl‐1H‐imidazole‐κN3)­cop­per(II) bis­(tri­fluoro­methane­sulfonate), [Cu(C4H6N2)4](CF3SO3)2, and aqua­tetrakis(2‐ethyl‐5‐methyl‐1H‐imidazole‐κN3)copper(II) bis(tri­ fluoro­methane­sulfonate), [Cu(C6H10N2)4(H2O)](CF3SO3)2. In the former, the Cu atom has an elongated octahedral coordination environment, with four imidazole rings in equatorial positions and two tri­fluoro­methane­sulfonate ions in axial positions. This conformation is similar to those in the analogous complexes tetrakis­(imidazole)­cop­per(II) tri­fluoro­methane­sulfonate and tetrakis(2‐methyl‐1H‐imidazole)­cop­per(II) tri­fluoro­methane­sulfonate. In the second of the title compounds, the ethyl groups block the central Cu atom, and a square‐pyramidal coordination environment is formed around the Cu atom, with the substituted imidazole rings in the basal positions and a water mol­ecule in the axial position.  相似文献   

11.
Two μ‐oxamido‐bridged dicopper(II) complexes, namely [Cu2(hmpoxd)(H2O)(phen)](ClO4) ( 1 ) and [Cu2(papo)(H2O)(phen)](ClO4)·2H2O ( 2 ), where H3hmpoxd and H3papo represent N‐(2‐hydroxy‐5‐methylphenyl)‐N′‐[3‐(dimethylamino)propyl]oxamide and N‐(2‐hydroxylphenyl)‐N′‐(3‐aminopropyl)oxamide, respectively, and phen represents 1,10‐phenanthroline, were synthesized. Single‐crystal X‐ray crystallography and other methods revealed that the two copper(II) ions in complex 1 are bridged by the cis‐hmpoxd3? with Cu···Cu separation of 5.1896(7) Å, in which the inner (Cu1) and outer (Cu2) copper(II) atoms are located in square‐planar and square‐pyramidal geometries, respectively. To evaluate the effects of bridging ligand hydrophobicity on DNA/protein binding and potential anticancer activities, comparative studies of the reactivity towards herring sperm DNA and protein bovine serum albumin (BSA) as well as cytotoxicity of complex 1 with our previously reported complex 2 were conducted theoretically and experimentally. The results indicate that the two complexes can interact interactively with DNA, and bind to BSA via the binding sites Trp213 for 1 and Trp134 for 2 . Interestingly, the in vitro anticancer activities and DNA/protein binding affinities consistently follow the order of 1 > 2 .  相似文献   

12.
Polyol Metal Complexes. III. Lithium Bis(oxolanediolato)cuprate Tetrahydrate and Lithium μ-Propanetriolatocuprate Hexahydrate — Two Homoleptic Copper(II) Complexes with Polyolate Ligands Derived from the Multiply Deprotonated Polyols Anhydro-erythritol and Glycerol . In the blue-violet crystals of lithium bis{meso-oxolane-3, 4-diolato(2 - )}cuprate tetrahydrate, Li2[Cu(C4H6O3)2] · 4H2O ( 1 ) (P21/c, a = 706.2(4), b = 1114.0(6), c = 958.3(5) pm, β = 107.67(3)°, Z = 2, Rw = 0.022), square-planar coordinated copper(II) ions are bound to twofold deprotonated anhydro-erythrol ligands (Cu? O 194.36(17) and 191.83(17) pm). The oxygen ligator atoms of the mononuclear cuprate ions are bound to lithium ions or they are acceptors in asymmetrical hydrogen bonds. Trinuclear tris-{μ-propanetriolato(3 - )}tricuprate ions with triply deprotonated glycerol as ligands are present in the deep blue columns of LiCuC3H5O3 · 6H2O ( 2 ) (P3 c1, a = 1 278.8(6), c = 2 420.5(12) pm, Z = 12, Rw = 0.059), which has been prepared for the first time by Bullnheimer [2]. The copper(II) ions in 2 are also bound to alkoxide oxygen atoms in square-planar coordination (Cu? O 190.7(7) and 192.4(8), Cu? μ-O 196.6(6) and 195.0(7) pm). The hydrogen bond system and the content of channels parallel [001] are described in terms of a disorder model.  相似文献   

13.
The β‐diketone 3‐(4‐cyano­phenyl)­pentane‐2,4‐dione crystallizes as the enol tautomer 4‐(2‐hydroxy‐4‐oxopent‐2‐en‐3‐yl)­benzo­nitrile, C12H11NO2, (I), with an intramolecular O—H⋯O hydrogen bond [O⋯O = 2.456 (2) Å]. Reaction of (I) with copper acetate monohydrate in the presence of triethyl­amine leads to the formation of the copper(II) complexbis­[3‐(4‐cyano­phenyl)­pentane‐2,4‐dionato‐κ2O,O]copper(II), [Cu(C12H10NO2)2], (II). In the structure of (II), the Cu atom is coordinated by four β‐diketonate O atoms in a slightly distorted square‐planar geometry, with Cu—O distances in the range 1.8946 (11)–1.9092 (11) Å. The nitrile moieties in (II) make it a candidate for reaction with other metal ions to produce supramolecular structures.  相似文献   

14.
The copper(II) environments for tetra­kis­(1‐eth­yl‐1,2,4‐triaz­ole)­dinitratocopper(II), [Cu(NO3)2(C4H7N3)4], and tetrakis­(1‐prop­yl‐1,2,4‐triazole)dinitratocopper(II), [Cu(NO3)2(C5H9N3)4], are distorted square bipyramidal. Both structures are centrosymmetric, with the copper(II) ions located at inversion centers coordinated by four N atoms of four triazole mol­ecules and by two O atoms of two nitrate ions in an elongated octa­hedral geometry. This elongation is a result of the Jahn–Teller effect. The largest distortion is that of the N—Cu—O angles, which differ from 90° by 5.68 (10)° in the eth­yl and 5.59 (8)° in the prop­yl derivative.  相似文献   

15.
The synthesis and characterization of two pyrazolate‐bridged dicopper(II) complexes, [Cu2(L1)2(H2O)2](ClO4)2 ( 1 , HL1=3,5‐dipyridyl‐4‐(2‐keto‐pyridyl)pyrazole) and [Cu2(L2)2(H2O)2](ClO4)2 ( 2 , HL2=3,5‐dipyridyl‐4‐benzoylpyrazole), are discussed. These copper(II) complexes are formed from the reactions between pyridine‐2‐aldehyde, 2‐acetylpyridine (for compound 1 ) or acetophenone (for compound 2 ), and hydrazine hydrate with copper(II) perchlorate hydrate under ambient conditions. The single‐crystal X‐ray structure of compound 1? 2 H2O establishes the formation of a pyrazole ring from three different carbon centers through C? C bond‐forming reactions, mediated by copper(II) ions. The free pyrazoles (HL1 and HL2) are isolated from their corresponding copper(II) complexes and are characterized by using various analytical and spectroscopic techniques. A mechanism for the pyrazole‐ring synthesis that proceeds through C? C bond‐forming reactions is proposed and supported by theoretical calculations.  相似文献   

16.
The dinuclear complex [Cu2(HL)2(H2O)2](ClO4)2 ( 1 ) [H2L = 5′‐(pyridin‐2‐yl)‐1‐H,2′‐H‐3, 3′‐bis(1, 2,4‐triazole)] was obtained and fully characterized. It exhibits a centrosymmetry configuration, in which each copper(II) ion is pentacoordinate with four nitrogen atoms of two triazole ligands and one oxygen atom from a water molecule. The net atomic charges distribution and atomic orbital contribution to frontier molecular orbitals were obtained using the Gaussian 98 program with Hartree‐Fock method at LANL2DZ level, indicating that the copper(II) ion has the potential to accept the electron of O2 · –. The complex showed quasi‐reversible one‐electron CuII/CuI redox waves with redox potentials of –0.034 V. The SOD‐like activity (IC50) of 1 was measured to be 0.18 ± 0.01 μM by xanthine/xanthine oxidase‐NBT assay at pH 7.8. The relatively high SOD activity suggests that the positive charge of protonated triazole can effectively steer O2 · – to and from the active copper ion.  相似文献   

17.
A new copper(II) phosphonatobenzenesulfonate incorporating 4,4′‐bipyridine (4,4′‐bipy) as auxiliary ligand has been discovered through systematic high‐throughput (HT) screening of the system Cu(NO3)2·3H2O/H2O3PC6H4SO3H/4,4′‐bipy using different solvents. The hydrothermal synthesis of [Cu(HO3PC6H4SO3)(C10H8N2)]·H2O ( 1 ) was further optimized by screening various copper(II) salts. The crystal structure of 1 was determined by single‐crystal X‐ray diffraction and unveiled the presence of isolated sixfold coordinated Jahn–Teller‐distorted Cu2+ ions. The isolated CuN2O4 octahedra are interconnected by phosphonate and sulfonate groups to form chains along the c‐axis. The organic groups, namely phenyl rings and 4,4′‐bipy molecules cross‐link the chains into a three‐dimensional framework. Water molecules are found in the narrow voids in the structure which are held by weak hydrogen bonds. Upon dehydration, the structure of 1 undergoes a phase transition, which was confirmed by TG measurements and temperature dependent X‐ray powder diffraction. The new structure of 1‐h was refined with Rietveld methods. Detailed inspection of the structure revealed the directional switching of the Jahn–Teller distortion upon de/rehydration. Weak ferro‐/ferrimagnetic interactions were observed by magnetic investigations of 1 , which switch to antiferromagnetic below 3.5 K. Compounds 1 and 1‐h are further characterized by thermogravimetric and elemental analysis as well as IR spectroscopy.  相似文献   

18.
The mixed‐ligand metal–organic complex poly[(μ3‐phthalato)[μ2‐3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐ido]dicopper(II)], [Cu2(C8H4O4)(C8H6N3)2]n, has been synthesized by the reaction of copper(II) acetate with 2‐(1H‐pyrazol‐3‐yl)pyridine (HL) and phthalic acid. The binuclear chelating–bridging L units are further linked by bridging phthalate ligands into a two‐dimensional network parallel to the (010) plane. The two‐dimensional networks are extended into a three‐dimensional supramolecular architecture viaπ–π stacking interactions.  相似文献   

19.
The title compound, poly[[μ‐cyanoureato‐tri‐μ‐hydroxido‐dicopper(II)] dihydrate], {[Cu2(C2H2N3O)(OH)3]·2H2O}n, is a new layered copper(II) hydroxide salt (LHS) with cyanoureate ions and water molecules in the interlayer space. The three distinct copper(II) ions have distorted octahedral geometry: one Cu (symmetry ) is coordinated to six hydroxide groups (4OH + 2OH), whilst the other two Cu atoms (symmetries and 1) are coordinated to four hydroxides and two N atoms from nitrile groups of the cyanoureate ions (4OH + 2N). The structure is held together by hydrogen‐bonding interactions between the terminal –NH2 groups and the central cyanamide N atoms of organic anions associated with neighbouring layers.  相似文献   

20.
The synthesis and characterization of the copper (II) complex [Cu2(OOCCH = C(CH3)Fc)3(phen)2]CIO4 · 2H2O (1) are reported. The structure of the complex was determined by single‐crystal X‐ray analysis. The compound crystallizes in the monoclinic system, space group Pc, with Z =2, a = 1.2799(4) nm, b =0.9969 (4) nm, c = 2.5228 nm, and β = 91.576 (1) °. The cationic part of 1 indicates a penametallic core in which three 3‐ferrocenyl‐2‐crotonic acid salt (FCA) groups act as (O, O') bridging ligands between two copper (II) ions with a square‐pyramidal environment. Cyclic voltammetric experiments in acetonitrile have been performed mainly to examine the Fe(II) → Fe(III) one‐electron oxidation in FCA and its complex. The variable‐temperature magnetic susceptibility measurements revealed very weak intramolecular anti‐ferromagnetic coupling. Fitting parameters are 2J = ‐0.2 cm?1, g = 2.114, and θ = 0K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号