首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The article focus on the isomerization of nitrous acid HONO to hydrogen nitryl HNO2. Density functional (B3LYP) and MP2 methods, and a wide variety of basis sets, have been chosen to investigate the mechanism of this reaction. The results clearly show that there are two possible paths: 1) Uncatalysed isomerisation, trans‐HONO → HNO2, involving 1,2‐hydrogen shift and characterized by a large energetic barrier 49.7 ÷ 58.9 kcal/mol, 2) Catalysed double hydrogen transfer process, trans‐HONO + cis‐HONO → HNO2 + cis‐HONO, which displays a significantly lower energetic barrier in a range of 11.6 ÷ 18.9 kcal/mol. Topological analysis of the Electron Localization Function (ELF) shows that the hydrogen transfer for both studied reactions takes place through the formation of a ‘dressed’ proton along the reaction path. 1 Use of a wide variety of basis sets demonstrates a clear basis set dependence on the ELF topology of HNO2. Less saturated basis sets yield two lone pair basins, V1(N), V2(N), whereas more saturated ones (for example aug‐cc‐pVTZ and aug‐cc‐pVQZ) do not indicate a lone pair on the nitrogen atom. Topological analysis of the Electron Localizability Indication (ELI‐D) at the CASSCF (12,10) confirms these findings, showing the existence of the lone pair basins but with decreasing populations as the basis set becomes more saturated (0.35e for the cc‐pVDZ basis set to 0.06e for the aug‐cc‐pVTZ). This confirms that the choice of basis set not only can influence the value of the electron population at the particular atom, but can also lead to different ELF topology. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
We use a variant of the focal point analysis to refine estimates of the relative energies of the four low‐energy torsional conformers of glycolaldehyde. The most stable form is the cis‐cis structure which enjoys a degree of H‐bonding from hydroxyl H to carbonyl O; here dihedral angles τ1 (O?C? C? O) and τ2 (C? C? O? H) both are zero. We optimized structures in both CCSD(T)/aug‐cc‐pVDZ and aug‐cc‐pVTZ; the structures agree within 0.01 Å for bond lengths and 1.0 degrees for valence angles, but the larger basis brings the rotational constants closer to experimental values. According to our extrapolation of CCSD(T) energies evaluated in basis sets ranging to aug‐cc‐pVQZ the trans‐trans form (180°, 180°) has a relative energy of 12.6 kJ/mol. The trans‐gauche conformer (160°, ±75°) is situated at 13.9 kJ/mol and the cis‐trans form (0°, 180°) at 18.9 kJ/mol. Values are corrected for zero point vibrational energy by MP2/aug‐cc‐pVTZ frequencies. Modeling the vibrational spectra is best accomplished by MP2/aug‐cc‐pVTZ with anharmonic corrections. We compute the Watsonian parameters that define the theoretical vibrational‐rotational spectra for the four stable conformers, to assist the search for these species in the interstellar medium. Six transition states are located by G4 and CBS‐QB3 methods as well as extrapolation using energies for structures optimized in CCSD(T)/aug‐cc‐pVDZ structures. We use two isodesmic reactions with two well‐established thermochemical computational schemes G4 and CBS‐QB3 to estimate energy enthalpy and Gibbs energy of formation as well as the entropy of the gas phase system. Our extrapolated electronic energies of species appearing in the isodesmic reactions produce independent values of thermodynamic quantities consistent with G4 and CBS‐QB3. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
In the search of the protocovalent bonding, previously recognized in the nitrous acid (HONO), a nature of the chemical bonds in the alkaline nitrites MONO (M = Li, Na, K) has been studied by means of the topological analysis of the Electron Localization Function (ELF) and Electron Localizability Indicator (ELI‐D). Calculations carried out with the B3LYP and MP2(full) methods, in conjunction with the aug‐cc‐pVTZ and 6‐311++G(3df,3pd) basis sets, revealed the cis (C2v, more stable) and trans (Cs) isomers as minima on PES. Alkaline nitrites consist of the alkali metal cation Mδ+ interacting, mainly via electrostatic forces, with the nitrite anion [ONO]δ− (δ ≈ 1e). The covalent N O bonds are characterized by disynaptic basins V(N,O) with the basin populations: 1.58÷1.62e for cis‐Mδ+[ONO]δ− but 1.39÷1.49e for single N O bond and 1.81÷1.87e for formally double NO bond in trans Mδ+[O NO]δ−. The protocovalent nitrogen–oxygen bond has not been observed. The N O bonds are slightly polarized towards the nitrogen atom with the polarity index pNO ≤ 0.12. Two different sets of the hybrid (Lewis) structures are compared leading to different pictures of the bonding. According to NBO data there is a delocalization between the single N O and double NO type bonds, meanwhile results of the ELF analysis emphasize an electron delocalization between the single N O and ionic ON+ hybrids. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

4.
The rate constants of the H‐abstraction reactions from cyclopropane by H, O (3P), Cl (2P3/2), and OH radicals have been calculated over the temperature range of 250?2500 K using two different levels of theory. Calculations of optimized geometrical parameters and vibrational frequencies are performed using the MP2 method combined with the cc‐pVTZ basis set and the 6–311++G(d,p) basis set. Single‐point energy calculations have been carried out with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (perturbatively) electron excitations CCSD(T) using either the cc‐pVTZ, aug‐cc‐pVTZ, and aug‐cc‐pVQZ basis sets or the 6–311++G(3df,3pd) basis set. The CCSD(T) calculated potential energies have been extrapolated to the complete basis limit (CBS) limit. The Full Configuration Interaction (FCI) energies have been also estimated using the continued‐fraction approximation as proposed by Goodson (J. Chem. Phys., 2002, 116, 6948–6956). Canonical transition‐state theory combined with an Eckart tunneling correction has been used to predict the rate constants as a function of temperature using two kinetic models (direct abstraction or complex mechanism) at two levels of theory (CCSD(T)‐cf/CBS//MP2/cc‐pVTZ and CCSD(T)‐cf/6–311++G(3df,3pd)//MP2/6–311++G(d,p)). The calculated kinetic parameters are in reasonable agreement with their literature counterparts for all reactions. In the light of these trends, the use of the Pople‐style basis sets for studying the reactivity of other systems such as larger cycloalkanes or halogenated cycloalkanes is recommended because the 6–311++G(3df,3pd) basis set is less time consuming than the aug‐cc‐pVQZ basis set. Based on our calculations performed at the CCSD(T)‐cf/CBS//MP2/cc‐pVTZ level of theory, the standard enthalpy of formation at 298 K for the cyclopropyl radical has been reassessed and its value is (290.5 ± 1.6) kJ mol?1.  相似文献   

5.
Isotropic nuclear shielding constants at the equilibrium molecular structure σeq and zero‐point vibrational corrections (ZPVCs) to σeq are evaluated using the B3LYP/aug‐cc‐pVTZ level of theory, as well as the KT2/aug‐cc‐pVTZ level of theory. Various scaling factors and systematic corrections are obtained by linear regression to experimental shielding constants. Comparisons of the scaled and systematically corrected equilibrium and vibrationally averaged shielding constants reveal that, at the 99% confidence level, the ZPVCs via second‐order perturbation theory do not improve the agreement of B3LYP/aug‐cc‐pVTZ and KT2/aug‐cc‐pVTZ calculated shielding constants with experiment. This holds true when the same analysis is applied to CCSD(T)/aug‐cc‐pCV[TQ]Z calculated σeq of Teale et al. [Journal of Chemical Physics 2013, 138, 024111]. In addition, at the 99% confidence level, B3LYP/aug‐cc‐pVTZ and KT2/aug‐cc‐pVTZ scaled and systematically corrected shielding constants are found to be statistically no different from CCSD(T)/aug‐cc‐pCV[TQ]Z calculated σeq. The use of scaling factors and systematic corrections could thus provide a cheaper but yet reasonably accurate alternative for the study of nuclear shielding constants of larger systems.  相似文献   

6.
The interactions between NH3, its methylated and chlorinated derivatives and CS2 are investigated by ab initio CCSD(T) and density functional BLYP‐D3 methods. The CCSD(T)/aug‐cc‐pVTZ calculated interaction energies of complexes characterized by the S···N chalcogen bonds range between ?1.71 and ?2.78 kcal mol?1. The S···N bonds are studied by atoms in molecules, natural bond orbital, and noncovalent interaction methods. The lack of correlation between the interaction energies of methylated amines complexes and the electrostatic potential results from the lone pair effect in aliphatic amines. Different structures of CS2 complexed with ammonia derivatives, stabilized by other than the S···N chalcogen bonds, are also predicted. These structures are characterized by interaction energies ranging between 1.15 and 3.46 kcal mol?1. The results show that the complexing ability of CS2 is not very high but this molecule is able to attack the electrophilic or nucleophilic sites of a guest molecule.  相似文献   

7.
A novel single‐electron sodium bond system of H3C···Na? H (I), H3C···Na? OH(II), H3C···Na? F(III), H3C···Na‐CCH(IV), H3C···Na? CN (V) and H3C···Na? NC (VI) complexes has been studied by using MP2/6‐311++G** and MP2/aug‐cc‐pVTZ methods for the first time. We demonstrated that the single‐electron sodium bond H3C···Na? Y formed between H3C and Na? Y (Y?H, OH, F, CCH, CN, and NC) could induce the Na? Y increased and stretching frequencies of I–IV and VI are red‐shifted, including the Na? N bond in complex V is blue‐shifted abnormally. The interaction energies are calculated at two levels of theory [MP2, CCSD(T)] with different basis. The results shows that the strength of binding bond in group 2 (IV–VI) with π electrons are stronger than that of group 1 (I–III) without π electrons. For all complexes, the main orbital interactions between moieties H3C and Na? Y are LP1(C)→LP*1(Na). By comparisons with some related systems, it is concluded that the strength of single‐electron bond is increased in the order: hydrogen bond < bromine bond < sodium bond < lithium bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
The computational study of the one‐bond 29Si–13C spin–spin coupling constants has been performed at the second‐order polarization propagator approximation (SOPPA) level in the series of 60 diverse silanes with a special focus on the main factors affecting the accuracy of the calculation including the level of theory, the quality of the basis set, and the contribution of solvent and relativistic effects. Among three SOPPA‐based methods, SOPPA(MP2), SOPPA(CC2), and SOPPA(CCSD), the best result was achieved with SOPPA(CCSD) when used in combination with Sauer's basis set aug‐cc‐pVTZ‐J characterized by the mean absolute error of calculated coupling constants against the experiment of ca 2 Hz in the range of ca 200 Hz. The SOPPA(CCSD)/aug‐cc‐pVTZ‐J method is recommended as the most accurate and effective computational scheme for the calculation of 1J(Si,C). The slightly less accurate but essentially more economical SOPPA(MP2)/aug‐cc‐pVTZ‐J and/or SOPPA(CC2)/aug‐cc‐pVTZ‐J methods are recommended for larger molecular systems. It was shown that solvent and relativistic corrections do not play a major role in the computation of the total values of 1J(Si,C); however, taking them into account noticeably improves agreement with the experiment. The rovibrational corrections are estimated to be of about 1 Hz or 1–1.5% of the total value of 1J(Si,C). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of a single water molecule on the reaction mechanism of the gas‐phase reaction between formic acid and the hydroxyl radical was investigated with high‐level quantum mechanical calculations using DFT–B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6‐311+G(2df,2p) and aug‐cc‐pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton‐coupled electron transfer process (pcet), two hydrogen‐atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).  相似文献   

10.
The five trimers of H2O···HNC···H2O, H2O···H2O···HNC, HNC···H2O···H2O, H2O···HNC···HNC, and HNC···HNC···H2O have been studied with quantum chemical calculations. Their structures, harmonic vibrational frequencies and interaction energies have been calculated at the B3LYP and MP2 levels with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets. The cooperative effect on these properties has also been studied quantitatively. For HNC:(H2O)2 systems, the cyclic H2O···H2O···HNC trimer is most stable with an interaction energy of ?16.01 kcal/mol and a large cooperative energy of ?3.25 kcal/mol at the MP2/aug‐cc‐pVTZ level. For H2O:(HNC)2 systems, the interaction energy and cooperative energy in the H2O···HNC···HNC trimer are larger than those in the HNC···HNC···H2O trimer. The NH stretch frequency has a blue shift for the terminal HNC molecule in the HNC···H2O···H2O and HNC···HNC···H2O trimers and a red shift in other cases. A many‐body analysis has also been performed to understand the interaction energies in these hydrogen‐bonded clusters. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
The reaction of propargyl alcohol with hydroxyl radical has been studied extensively at CCSD(T)/aug‐cc‐pVTZ//MP2/cc‐pVTZ level. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for this important reaction in detail. Two reaction mechanisms were revealed, namely addition/elimination and hydrogen abstraction mechanism. The reaction mechanism confirms that OH addition to C?C triple bond forms the chemically activated adducts, IM1 (·CHCOHCH2OH) and IM2 (CHOH·CCH2OH), and the hydrogen abstraction pathways (? CH2OH bonded to the carbon atom and alcohol hydrogen) may occur via low barriers. Harmonic model of Rice–Ramsperger–Kassel–Marcus theory and variational transition state theory are used to calculate the overall and individual rate constants over a wide range of temperatures and pressures. The calculated rate constants are in good agreement with the experimental data. At atmospheric pressure with Ar as bath gas, IM1 (·CHCOHCH2OH) and IM2 (CHOH·CCH2OH) formed by collisional stabilization are dominant in the low temperature range. The production of CHCCHOH + H2O via hydrogen abstraction becomes dominate at higher temperature. The fraction of IM3 (CH2COHCH2·O) is very significant over the moderate temperature range. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The O···H? O and Cl···H? O hydrogen bonding interactions were analyzed for HOCl dimers by using B3LYP, MP2, CCSD, and MP4(SDTQ) methods in conjunction with the various basis sets. Five isomers were found for the HOCl dimer. The ZPE and BSSE corrected binding energies were computed at the different levels of theory. At the optimized geometries obtained at CCSD/AUG‐cc‐pVDZ level, energies were re‐evaluated at MP4(SDTQ)/AUG‐cc‐pVTZ and CCSD(T)/cc‐pVTZ levels of theory. We found an average of ?20.9 and ?9.6 kJ/mol for the strength of the O···H and Cl···H hydrogen bonding interactions, respectively. Excitation and vertical ionization energies as well as rotational constants were computed at different levels of theory. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis were used to elucidate the nature of the interactions of HOCl dimers. The interaction energies were decomposed by Morokuma methodology. We have computed ΔfH°(HOCl) and ΔfH°(HOCl+) using the atomization reactions. The Δf298(HOCl) values are ?17.85 and ?18.05 kcal/mol by using CBS‐Q and CBS‐QB3 extrapolation models, respectively, in good agreement with the results given in JANAF tables. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
An ab initio computational study of the dual functions of C?S group in the M2C?S ··· HCN (M = H, F, Cl, Br, HO, H3C, H2N) complex has been performed at the MP2(Full)/aug‐cc‐pVTZ level. The C?S group can act as both the electron donor and acceptor, thus two minima complexes were found for each molecular pairs. The interaction energy of hydrogen bond in the F, Cl, or Br substituted complexes is less negative than that in the corresponding H2CS one, while the interaction energy of the σ‐hole interaction is more negative. The OH substitution weakens the hydrogen bond, whereas the H3C and H2N substitution strengthens it. The σ‐hole interaction in the HO, H3C, and H2N complexes is very weak. The substitution effect has been understood with electrostatic induction and conjugation effects. The energy decomposition analysis has been performed for the halogen‐substituted complexes. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012.  相似文献   

14.
In this work, we present a complete structural and vibrational analysis of the OH torsional motion in difluorohydroxyborane (BF2OH) at the HF/aug‐cc‐pVTZ, MP2(full)/aug‐cc‐pVTZ, and CCSD/aug‐cc‐pVTZ theory levels. After full relaxation of the geometry, the equilibrium structure is found in a planar conformation of Cs symmetry. The difference in the two BF distances suggests the existence of a nonbonded interaction between the fluorine and oxygen atoms. The structural and energetic variation of BF2OH as a function of the OH torsional angle is considered. The torsional barrier, at the CCSD/aug‐cc‐pVTZ level, and including the effect of the zero‐point energy of the remaining vibrations, is found 2,728 cm?1. In addition, an anharmonic Hamiltonian for the OH torsional mode is presented and variationally solved. To simplify the treatment and to classify the energy levels, BF2OH is classified under a G4 nonrigid group accounting for the inversion symmetry of the molecule and the interchange of the fluorine atoms. The computed torsional energy levels exhibit a very small inversion splitting. The torsional spectrum is simulated considering the dipole moment components along the principal axes of inertia as an explicit function of the torsional coordinate. We observe three dominant bands in the spectrum formed by doublets corresponding to ν9 = 0 → 1, 2 transitions. The fundamental is an a‐type, Franck–Condon, transition. This is the strongest and appears at 466.80 cm?1 with relative intensity 0.4312. The ν9 = 0 → 2 bands correspond to doublets of b‐ and c‐type, i.e., Herzberg–Teller transitions. These are two overlapping bands found at 890.92 and 890.94 cm?1 with intensity 0.2207 for the b‐type band and 0.2193 for the c‐type band. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
The electronic structure of iron‐oxo porphyrin π‐cation radical complex Por·+FeIV?O (S? H) has been studied for doublet and quartet electronic states by means of two methods of the quantum chemical topology analysis: electron localization function (ELF) η(r) and electron density ρ(r). The formation of this complex leads to essential perturbation of the topological structure of the carbon–carbon bonds in porphyrin moiety. The double C?C bonds in the pyrrole anion subunits, represented by pair of bonding disynaptic basins Vi=1,2(C,C) in isolated porphyrin, are replaced by single attractor V(C,C)i=1–20 after complexation with the Fe cation. The iron–nitrogen bonds are covalent dative bonds, N→Fe, described by the disynaptic bonding basins V(Fe,N)i=1–4, where electron density is almost formed by the lone pairs of the N atoms. The nature of the iron–oxygen bond predicted by the ELF topological analysis, shows a main contribution of the electrostatic interaction, Feδ+···Oδ?, as long as no attractors between the C(Fe) and C(O) core basins were found, although there are common surfaces between the iron and oxygen basines and coupling between iron and oxygen lone pairs, that could be interpreted as a charge‐shift bond. The Fe? S bond, characterized by the disynaptic bonding basin V(Fe,S), is partially a dative bond with the lone pair donated from sulfur atom. The change of electronic state from the doublet (M = 2) to quartet (M = 4) leads to reorganization of spin polarization, which is observed only for the porphyrin skeleton (?0.43e to 0.50e) and S? H bond (?0.55e to 0.52e). © 2012 Wiley Periodicals, Inc.  相似文献   

16.
A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T)), with affordable pcS‐2 basis set and corresponding complete basis set results, estimated from calculations with the family of polarization‐consistent pcS‐n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and shieldings obtained with the significantly smaller basis sets pcS‐2 and aug‐cc‐pVTZ‐J for the selected set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS‐2, MP2/pcS‐2 and DFT/CBS calculations with pcS‐n basis sets. The proposed method leads to a fairly accurate estimation of nuclear magnetic shieldings and considerable saving of computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Ab initio molecular orbital and DFT calculations have been carried out for three most stable dimers of parent nitrosamine (NA) in order to elucidate the structures and energetics of the dimers. The structures were optimized using HF, B3LYP, and MP2 methods with 6‐311+G(d,p) and 6‐311++G(2d,2p) basis sets. At the optimized geometries obtained at MP2/6‐311++G(2d,2p) level of theory, the energies were evaluated at QCISD/aug‐cc‐pVDZ and CCSD/aug‐cc‐pVDZ levels. The most stable dimer has two N? H···O?N hydrogen bonds and the least stable dimer has two N? H···N?O hydrogen bonds. The natural bond orbital analysis showed that the lpO(N) → BD*(N? N) and lpO(N) → BD*(N? Hb) interactions play a decisive role in the stabilization of the NH···O(N) hydrogen bonds in dimers. The atoms in molecules results reveal that the intermolecular N? H···O(N) H‐bonds in dimers have electrostatic character. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

18.
The substituent effects in aerogen bond interactions between ZO3 (Z = Kr, Xe) and different nitrogen bases are studied at the MP2/aug‐cc‐pVTZ level of theory. The nitrogen bases include the sp bases NCH, NCF, NCCl, NCBr, NCCN, NCOH, NCCH3 and the sp3 bases NH3, NH2F, NH2Cl, NH2Br, NH2CN, NH2OH, and NH2CH3. The nature of aerogen bonds in these complexes is analyzed by means of molecular electrostatic potential, electron localization function, quantum theory atoms in molecules, noncovalent interaction index, and natural bond orbital analyses. The interaction energy (Eint) ranges from ?4.59 to ?9.65 kcal/mol in the O3Z···NCX complexes and from ?5.30 to ?13.57 kcal/mol in the O3Z···NH2X ones. The dominant charge‐transfer interaction in these complexes occurs across the aerogen bond from the nitrogen lone‐pair (nN) of the Lewis base to the σ*Z‐O antibonding orbital of the ZO3. Besides, the formation of aerogen bond tends to decrease the 83Kr or 131Xe chemical shielding values in these complexes. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The structural stability and bonding energies of the neutral noble gas molecules FNgX and their anions FNgX? (Ng = He, Ar, Kr; X = O, S) are discussed at the CCSD(T)/aug‐cc‐pVnZ (n = D, T) levels. Results reveal that only two neutral FKrX molecules are stable, whereas their FHeX and FArX counterparts are not. All their anions are stable and the stability mainly derives from the contribution of the extra electron, i.e., the attachment of the electron greatly enhances the orbital interactions of two bonds, F? Ng and Ng? X. Different from the anion counterparts, the electrostatic interaction energy plays a crucial role in the FKrX stability. Compared with those unstable FHeX and FArX counterparts, the enough charge distribution over each atom of FKrX ensures the effective bonding between F and Kr, and between Kr and X, consequently strengthen the stability of the neutral FKrX (X = O, S) structures. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

20.
The intermolecular potential energy surface (PES) of argon with ethane has been studied by ab initio calculations at the levels of second‐order Møller–Plesset perturbation (MP2) theory and coupled‐cluster theory with single, double, and noniterative triple configurations (CCSD(T)) using a series of augmented correlation‐consistent basis sets. Two sets of bond functions, bf1 (3s3p2d) and bf2 (6s6p4d2f), have been added to the basis sets to show a dramatic and systematic improvement in the convergence of the entire PES. The PES of Ar–ethane is characterized by a global minimum at a near T‐shaped configuration with a well depth of 0.611 kcal mol?1, a second minimum at a collinear configuration with a well depth of 0.456 kcal mol?1, and a saddle point connecting the two minima. It is shown that an augmented correlation‐consistent basis set with a set of bond functions, either bf1 or bf2, can effectively produce results equivalent to the next larger augmented correlation‐consistent basis set, that is, aug‐cc‐pVDZ‐bf1 ≈ aug‐cc‐pVTZ, aug‐cc‐pVTZ‐bf1 ≈ aug‐cc‐pVQZ. Very importantly, the use of bond functions improves the PES globally, resulting accurate potential anisotropy. Finally, MP2 method is inadequate for accurate calculations, because it gives a potentially overestimated well depth and, more seriously, a poor potential anisotropy. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号