首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Human immunodeficiency virus (HIV) diagnostics are urgently needed in resource-scarce settings. Monitoring of HIV-infected patients requires accurate counting of CD4+ T lymphocytes. However, the current methods for enumeration of CD4+ T lymphocytes are of high cost, technically complex and time-consuming. In this paper, we developed a simple, rapid and inexpensive one-step immunomagnetic method for separating and counting CD4+ T lymphocytes on microfluidic devices with enlarged reaction chambers. CD4+ T lymphocytes were successfully separated and captured from the cell suspension obtained from mouse thymus. CD4 counts were determined under an optical microscope in a rapid and simple format. In order to acquire the maximum efficiency of cell capture, relative parameters were investigated, including section area of the reaction chamber and injection flow rate of the cell suspension. The enlarged reaction chamber with two symmetrical cone-shaped ends was helpful for cell capture, and the maximum capability of captured CD4+ T lymphocytes was about 700 cells μL−1. Our investigations avoided the complex sample pre-treatment, and the entire analysis time was significantly reduced to 15 min. This CD4 counting microdevice had the potential to reduce the cost for HIV diagnosis in resource-limited settings.  相似文献   

2.
We present a simple system for CD4 and CD8 counting for point-of-care HIV staging in low-resource settings. Automatic sample preparation is achieved through a dried reagent coating inside a thin (26 μm) counting chamber, allowing the delayed release of fluorochrome conjugated monoclonal antibodies after the filling of the chamber with whole blood by capillary flow. A custom-built image cytometer is used to capture fluorescence images representing more than 1 μl of blood. The thin layer of blood in combination with the large image area allows the use of whole blood from a finger prick without the need for dilution, lysis or cell enrichment. Automatic cell counting of CD4(+) and CD8(+) T-lymphocytes correlates well with results obtained by flow cytometry.  相似文献   

3.
Cytokine secretion by leukocytes is an important indicator of immune response to pathogens and therefore has significant implications in disease diagnostics. Given heterogeneity of leukocyte subsets and the ability of multiple cell subsets to secrete the same cytokines, connecting cytokine production to a specific leukocyte subset is a distinct challenge. In the present paper we describe a strategy combining antibody (Ab)-based affinity cell separation and surface plasmon resonance (SPR) for capturing human CD4 T-cells and for label-free detection of cell-secreted interferon (IFN)-γ – an important inflammatory cytokine. Human blood was introduced into a flow chamber modified with anti-CD4 Abs resulting in capture of CD4+ T-cells. After mitogenic activation of cells inside the flow chamber, culture medium was routed onto an SPR chip modified with monoclonal IFN-γ Abs. SPR signal observed in this experiment correlated with cytokine production by T-cells. The strategy of combining SPR detection with cell purification may be used in the future for label-free, sensitive detection of multiple cytokines or proteins secreted by the desired cell subset.  相似文献   

4.
Peripheral blood can provide valuable information on an individual’s immune status. Cell‐based assays typically target leukocytes and their products. Characterization of leukocytes from whole blood requires their separation from the far more numerous red blood cells. 1 Current methods to classify leukocytes, such as recovery on antibody‐coated beads or fluorescence‐activated cell sorting require long sample preparation times and relatively large sample volumes. 2 A simple method that enables the characterization of cells from a small peripheral whole blood sample could overcome limitations of current analytical techniques. We describe the development of a simple graphene oxide surface coated with single‐domain antibody fragments. This format allows quick and efficient capture of distinct WBC subpopulations from small samples (~30 μL) of whole blood in a geometry that does not require any specialized equipment such as cell sorters or microfluidic devices.  相似文献   

5.
CD40 ligand (CD40L) expressed by activated CD4+ T cells is a family member of membrane bound TNF family ligand and its interaction with CD40 expressed in APC has been shown to contribute in enhancing immune response. Exogenous stimulation through CD40 has been performed using soluble trimeric CD40L, anti-CD40 monoclonal antibody and cells expressing CD40L. Schneider 2 (S2) cells, a cell line derived from Drosophila melanogaster, was transfected with a plasmid vector, pAc5.1/V5-HisA, for the constitutive expression of CD40L (S2-CD40L). Upon incubation of S2-CD40L with B-lymphocytes for 6 days, activated B cells were examined by counting B cell numbers and for activation markers including CD86 and HLA Class II molecules. The activated B cells were tested for its efficient APC function by mixed lymphocyte reactions (MLR) and enzyme-linked Immunospot (ELISPOT) assay. S2-CD40L was cultured for a year and maintained CD40L expression (>90%). S2-CD40L induced B cell activation as demonstrated by increment of total B cells and up-regulation of CD86 and MHC Class II molecules. Activated B cells pulsed with peptide from human cytomegalovirus pp65 antigen efficiently induced both proliferation and IFN-gamma secretion of T cells. Our result suggests that S2-CD40L can efficiently and conveniently generate B cells as a functional APC and represents a potential role for B-cell mediated cancer immunotherapy.  相似文献   

6.
4-1BB, a transmembrane molecule, member of the tumor necrosis factor receptor superfamily, is an important costimulatory molecule in the immune response, plays a key role in the clonal expansion and survival of CD8(+) T cells. In this study, we investigated 4-1BB regulation of CD4(+) T cell responses using 4-1BB transgenic (TG) mice that constitutively expressed 4-1BB on mature T cells. We first showed that CD4(+) T cells of 4-1BB TG mice had more sustained proliferative capacity in response to TCR/4-1BB stimulation in vitro compared to WT mice. Secondly, 4-1BB TG mice exhibited a more elevated contact hypersensitivity (CHS) response mediated by CD4+ Th1 cells due to more vigorous expansion of and apoptotic inhibition of CD4(+) T cells. Finally, CD4(+) T cells of 4-1BB TG mice had a heightened capacity for T cell priming. Overall, our results demonstrate the involvement of 4-1BB in CD4(+) Th1 cell responses by regulating the clonal expansion and survival of CD4(+) T cells as seen in CD8(+) T cells.  相似文献   

7.
Blockade of signal 1 or 2 for T-cell activation by the use of anti-CD45RB and anti-CD154 monoclonal antibodies (mAb) (two-signal blockade) has been proven effective in preventing or delaying graft rejection. However, the mechanisms of its immunomodulatory effects are clearly unknown and the present studies were performed to determine how the two-signal blockade modulate allogeneic immune responses, especially T-cell mediated cellular immunity, in a murine skin allograft model. We now report on the profound inhibition of alloreactive T cells by two-signal blockade via CD4-dependent mechanisms. C57BL/6 mice of BALB/c skin allograft were treated with anti-CD45RB, anti-CD154, CTLA4-Ig, or their combinations. For depletion of CD4 or CD8 T cells, the recipients received CD4-depleting or CD8-depleting mAb. We confirmed that survival of skin allograft was markedly prolongated in the two-signal blockade-treated group. In depletion study, anti-CD45RB, anti-CD154 and CD4-depleting mAb-treated group showed acute rejection of skin allograft in contrast to CD8-depleting group treated with the two-signal blockade. In the group treated with the two-signal blockade, the proportions of CD4+CD45RB(low) and CD8+CTLA-4 regulatory T cells were increased while effector CD8+ T cells, including IFN-gamma-secreting and CD8+CD62L(low) T cells, were decreased when compared with non-treated group. In contrast, the CD4-depleted group treated with the two-signal blockade resulted in recovery from immunoregulatory effects of two-signal blockade. In addition, results of IL-4 and IL-10 production were also showed CD4-dependence. Therefore, the two- signal blockade is accompanied by CD4-dependent mechanisms in allogeneic skin transplantation.  相似文献   

8.
Immunoaffinity microfluidic devices have recently become a popular choice to isolate specific cells for many applications. To increase cell capture efficiency, several groups have employed capture beds with nanotopography. However, no systematic study has been performed to quantitatively correlate surface nanopatterns with immunoaffinity cell immobilization. In this work, we controlled substrate topography by depositing close-packed arrays of silica nanobeads with uniform diameters ranging from 100 to 1150 nm onto flat glass. These surfaces were functionalized with a specific antibody and assembled as the base in microfluidic channels, which were then used to capture CD4+ T cells under continuous flow. It is observed that capture efficiency generally increases with nanoparticle size under low flow rate. At higher flow rates, cell capture efficiency becomes increasingly complex; it initially increases with the bead size then gradually decreases. Surprisingly, capture yield plummets atop depositions of some particle diameters. These dips likely stem from dynamic interactions between nanostructures on the substrate and cell membrane as indicated by roughness-insensitive cell capture after glutaraldehyde fixing. This systematic study of surface nanotopography and cell capture efficiency will help optimize the physical properties of microfluidic capture beds for cell isolation from biological fluids.  相似文献   

9.
Gurkan UA  Anand T  Tas H  Elkan D  Akay A  Keles HO  Demirci U 《Lab on a chip》2011,11(23):3979-3989
Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.  相似文献   

10.
Aptamers have recently emerged as an excellent alternative to antibodies because of their inherent stability and ease of modification. In this paper, we describe the development of an aptamer-based surface for capture of cells expressing CD4 antigen. The glass or silicon surfaces were modified with amine-terminated silanes and then modified with thiolated RNA aptamer against CD4. Modification of the surface was first characterized by ellipsometry to demonstrate assembly of biointerface components and to show specific capture of recombinant CD4 protein. Subsequently, surfaces were challenged with model lymphocytes (cell lines) that were either positive or negative for CD4 antigen. Our experiments show that aptamer-functionalized surfaces have similar capture efficiency to substrates containing anti-CD4 antibody. To mimick capture of specific T-cells from a complex cell mixture, aptamer-modified surfaces were exposed to binary mixtures containing Molt-3 cells (CD4+) spiked into Daudi B cells (CD4-). 94% purity of CD4 cells was observed on aptamer-containing surfaces from an initial fraction of 15% of CD4. Given the importance of CD4 cell enumeration in HIV/AIDS diagnosis and monitoring, aptamer-based devices may offer an opportunity for novel cell detection strategies and may yield more robust and less expensive blood analysis devices in the future.  相似文献   

11.
CD43 (sialophorin, leukosialin) is a heavily sialylated surface protein expressed on most leukocytes and platelets including T cells. Although CD43 antigen is known to have multiple and complex structure, exact function of CD43 in each cell type is not completely understood. Here we evaluated the role of CD43 in Fas (CD95)-induced cell death in human T lymphoblastoid cell line, Jurkat. Crosslinking CD43 antigen by K06 mAb increased the Fas-mediated Jurkat cell apoptosis and the augmentation was inhibited by treatment with caspase inhibitors. Further, CD43 signaling of Jurkat cells induced Fas oligomerization on the cell surfaces implying that CD43 ligation have effects on early stage of Fas-induced T cell death. These also suggest that CD43 might play an important role in contraction of the immune response by promotion of Fas-induced apoptosis in human T cells.  相似文献   

12.
Exposure of skin to solar UV radiation induces oxidative stress and suppression of cell-mediated immune responses. These effects are associated with the greater risk of several skin disorders including photoaging and photocarcinogenesis. We have shown that UV-induced infiltrating leukocytes contribute in developing oxidative stress in UV-irradiated skin. The peak period of UV-induced infiltrating leukocytes lies between 48 and 72 h after UV exposure of the skin. In this study we demonstrated that UV (90 mJ/cm2)-induced infiltrating CD11b+ cells in C3H/HeN mice skin were the major source of oxidative stress. Hydrogen peroxide (H2O2) was determined as a marker of oxidative stress. Flow cytometric analysis of viable cells revealed that the number of CD11b+H2O2+ cells were significantly higher (31.8%, P < 0.001) in UV-irradiated skin in comparison with non-UV-exposed skin (0.4%). Intraperitoneal administration of monoclonal antibodies to CD11b (rat IgG2b) to C3H/HeN mice inhibited UVB-induced infiltration of leukocytes, as evidenced by reduction in myeloperoxidase activity (64-80%, P < 0.0005), concomitant with significant reduction in H2O2 production both in epidermis and dermis (66-83%, P < 0.001-0.0005) when compared with the administration of rat IgG2b isotype of anti-CD11b. Furthermore, CD11b+ and CD11b- cell subsets were separated by immunomagnetic cell isolation technique from total epidermal and dermal single cell suspensions obtained 48 h after UV irradiation of the skin and analyzed for H2O2 production. Analytical data revealed that CD11b+ cell population from UV-irradiated skin resulted in significantly higher production of total H2O2 in both epidermis and dermis (87-89%, P < 0.0001) in comparison with CD11b- cell population (11-13% of total H2O2). These data revealed that infiltrating CD11b+ cells were the major source of oxidative stress in UV-irradiated skin and thus may contribute to photoaging and promotion of skin tumor growth within the UV-irradiated skin. Together, these data suggest that reduction in UV-induced skin infiltration of CD11b+ cells may be an alternative and effective strategy to reduce solar UV light-induced oxidative stress-mediated skin disorders including photoaging and photocarcinogenesis.  相似文献   

13.
Practical HIV diagnostics are urgently needed in resource-limited settings. While HIV infection can be diagnosed using simple, rapid, lateral flow immunoassays, HIV disease staging and treatment monitoring require accurate counting of a particular white blood cell subset, the CD4(+) T lymphocyte. To address the limitations of current expensive, technically demanding and/or time-consuming approaches, we have developed a simple CD4 counting microfluidic device. This device uses cell affinity chromatography operated under differential shear flow to specifically isolate CD4(+) T lymphocytes with high efficiency directly from 10 microliters of unprocessed, unlabeled whole blood. CD4 counts are obtained under an optical microscope in a rapid, simple and label-free fashion. CD4 counts determined in our device matched measurements by conventional flow cytometry among HIV-positive subjects over a wide range of absolute CD4 counts (R(2) = 0.93). This CD4 counting microdevice can be used for simple, rapid and affordable CD4 counting in point-of-care and resource-limited settings.  相似文献   

14.
设计并制作了一种集多孔流分离(Multi-orifice flow fractionation,MOFF)技术与磁捕获技术于一体的用于特异性分离和捕获合成样本中肝癌细胞HepG2的多功能微流控细胞芯片.此芯片由玻璃基片和PDMS微通道盖片组成,PDMS盖片上含有3条进样通道、MOFF分离区和六边形腔体的细胞富集检测区.其中,MOFF分离区总长20 mm,由80组长度为0.18 mm、深度为50μm、收缩区域宽度为0.06 mm、扩张区域宽度为0.20 mm的半菱形收缩/扩张重复单元组成,每组收缩/扩张重复单元间的夹角为103.0°.实验以肝癌细胞HepG2-血细胞混悬液为样本;根据磁珠表面修饰c-Met抗体能与肝癌细胞HepG2特异性结合的原理,通过表面羧基化的磁珠、EDC(1 mg/mL)、NHS(1 mg/mL)和c-Met抗体制备了浓度为50μg/mL的免疫磁珠(Anti-MNCs)悬浮液.在样本流速为50μL/min条件下,利用外加磁场实现了血细胞合成样本中微量肝癌细胞HepG2的有效捕获;采用微波加热法以柠檬酸、硫脲为原料制备了用于荧光标记HepG2的碳量子点,在芯片上实现了血液中肝癌细胞HepG2的原位荧光可视化观测.对芯片检测区捕获到的HepG2进行了显微计数分析,对500μL血细胞(107 cell/mL)中含10个HepG2细胞的合成样本,捕获效率达到88.5%±6.7%(n=20).结果表明,所设计的多模式多功能的微流控芯片具有良好的肿瘤细胞分离和检测功能.  相似文献   

15.
Cells may be captured and released using a photodegradable hydrogel (photogel) functionalized with antibodies. Photogel substrates were used to first isolate human CD4 or CD8 T‐cells from a heterogeneous cell suspension and then to release desired cells or groups of cells by UV‐induced photodegradation. Flow cytometry analysis of the retrieved cells revealed approximately 95 % purity of CD4 and CD8 T‐cells, suggesting that this substrate had excellent specificity. To demonstrate the possibility of sorting cells according to their function, photogel substrates that were functionalized with anti‐CD4 and anti‐TNF‐α antibodies were prepared. Single cells captured and stimulated on such substrates were identified by the fluorescence “halo” after immunofluorescent staining and could be retrieved by site‐specific exposure to UV light through a microscope objective. Overall, it was demonstrated that functional photodegradable hydrogels enable the capture, analysis, and sorting of live cells.  相似文献   

16.
Cells may be captured and released using a photodegradable hydrogel (photogel) functionalized with antibodies. Photogel substrates were used to first isolate human CD4 or CD8 T‐cells from a heterogeneous cell suspension and then to release desired cells or groups of cells by UV‐induced photodegradation. Flow cytometry analysis of the retrieved cells revealed approximately 95 % purity of CD4 and CD8 T‐cells, suggesting that this substrate had excellent specificity. To demonstrate the possibility of sorting cells according to their function, photogel substrates that were functionalized with anti‐CD4 and anti‐TNF‐α antibodies were prepared. Single cells captured and stimulated on such substrates were identified by the fluorescence “halo” after immunofluorescent staining and could be retrieved by site‐specific exposure to UV light through a microscope objective. Overall, it was demonstrated that functional photodegradable hydrogels enable the capture, analysis, and sorting of live cells.  相似文献   

17.
We present a novel, on-chip system for the electrokinetic capture of bacterial cells and their identification using the polymerase chain reaction (PCR). The system comprises a glass-silicon platform with a set of micro-channels, -chambers, and -electrodes. A platinum thin film resistor, placed in the proximity of the chambers, is used for temperature monitoring. The whole chip assembly is mounted on a Printed Circuit Board (PCB) and wire-bonded to it. The PCB has an embedded heater that is utilized for PCR thermal cycle and is controlled by a Lab-View program. Similar to our previous work, one set of electrodes on the chip inside the bigger chamber (0.6 microl volume) is used for diverting bacterial cells from a flowing stream into to a smaller chamber (0.4 nl volume). A second set of interdigitated electrodes (in smaller chamber) is used to actively trap and concentrate the bacterial cells using dielectrophoresis (DEP). In the presence of the DEP force, with the cells still entrapped in the micro-chamber, PCR mix is injected into the chamber. Subsequently, PCR amplification with SYBR Green detection is used for genetic identification of Listeria monocytogenes V7 cells. The increase in fluorescence is recorded with a photomultiplier tube module mounted over an epifluorescence microscope. This integrated micro-system is capable of genetic amplification and identification of as few as 60 cells of L. monocytogenes V7 in less than 90 min, in 600 nl volume collected from a sample of 10(4) cfu ml(-1). Specificity trials using various concentrations of L. monocytogenes V7, Listeria innocua F4248, and Escherichia coli O157:H7 were carried out successfully using two different primer sets specific for a regulatory gene of L. monocytogenes, prfA and 16S rRNA primer specific for the Listeria spp., and no cross-reactivity was observed.  相似文献   

18.
19.
We have previously described an in vitro model for studying human immunodeficiency virus, type 1 (HIV-1) infection in CD4+ T cells [1]. This model employs the WE17/10 cell line, which loses expression of its T cell receptor/CD3 (TCR/CD3) after several months of productive infection. We have used this model to analyze the synthesis and posttranslational modification of viral and cellular proteins after HIV-1 infection and to determine the relationship of these changes to TCR/CD3 expression. Mainly we observe positive changes in protein expression after infection. A phosphoprotein, referred to as WH:1, appears in infected cells that still express their TCR/CD3 complex, and its persistence is linked to the presence of the complex. We examined whether loss of the TCR/CD3 complex could be associated with alterations in the T cell activation pathway as a result of infection. We used T cell activators and inhibitors to determine whether there were common elements between the two events. Quantitative enhancement in one spot, Cs:1, occurred after both Cyclosporin A treatment of uninfected cells and HIV-1 infection of untreated cells. Taken altogether, these data suggest that a correlation exists between negative regulation of late events in the T cell activation pathway and down regulation of the TCR/CD3 complex after HIV-1 infection.  相似文献   

20.
Ultraviolet (UV) radiation, in particular the midwavelength range (UVB; 290-320 nm), is one of the most significant risk factors for the development of nonmelanoma skin cancer. UVB radiation-induced immunosuppression, which occurs in both humans and laboratory animals, contributes to their pathogenesis. However, there are conflicting reports on the relative role of CD4(+) and CD8(+) T cells in UVB induced skin cancer. The purpose of this study was to delineate the contribution of these two cell subpopulations to UVB induced immunosuppression and tumor development using C3H/HeN (WT), CD4 knockout (CD4(-/-) ) and CD8 knockout (CD8(-/-) ) mice. We observed that UVB induced skin carcinogenesis was retarded in terms of number of tumors per group, tumor volume and percentage of mice with tumors, in mice deficient in CD4(+) T cells compared with wild-type mice, whereas significantly greater (P < 0.05) numbers of tumors occurred in CD8(-/-) mice. These results indicate that, CD4(+) T cells promote tumor development while CD8(+) T cells have the opposite effect. Further, we found that CD4(+) T cells from tumor-bearing mice produced interleukin (IL)-4, IL-10, and IL-17 whereas CD8(+) T cells produced interferon-γ. Manipulation of T-cell subpopulations that are induced by UVB radiation could be a means of preventing skin cancers caused by this agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号