首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doll KM  Finke RG 《Inorganic chemistry》2003,42(16):4849-4856
An intriguing but controversial hypothesis has appeared that "The optimization of enzyme catalysis may entail the evolutionary implementation of chemical strategies that increase the probability of tunneling and thereby accelerate the reaction rate" (Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397). Restated, enzymes may have evolved to enhance quantum mechanical tunneling by coupling to protein low nu modes that squeeze the reacting centers together in, for example, their H(*) atom abstraction reactions. Such a putative "protein squeezing" mechanism would enhance hydrogen quantum mechanical tunneling by reducing the barrier width. An alternative hypothesis is that enzymes do not enhance tunneling, but simply exploit the same amount of tunneling present in their enzyme-free solution reactions, if those reactions occur. A third, conceivable hypothesis is that enzymes might even inadvertently decrease the amount of tunneling as an undesired result of increasing the barrier width while reducing the barrier height. Testing these hypotheses experimentally requires the extremely rare event of being able to measure the amount of tunneling both in the enzyme system and in a very similar if not identical reaction in enzyme-free solution. This has been accomplished experimentally in only one prior case, our recent study of AdoCbl (coenzyme B(12)) and 8-Meo-AdoCbl undergoing enzyme-like H(*) abstraction reactions (Doll, K. M.; Bender, B. R.; Finke, R. G. to J. Am. Chem. Soc. 2003, in press). The data there reveal no change in the level of tunneling within or outside of the enzyme in comparison to the best literature data for an AdoCbl-dependent enzyme, methylmalonyl-CoA mutase. However, that first system suffers from two limitations: the measurement of the KIE (kinetic isotope effect) data in a nonenzymic 80-110 degrees C temperature range; and lower precision data than desired due to the HPLC-MS method required for one of the KIE analyses. These limitations have now been overcome by the synthesis, then thermolysis and KIE study vs temperature of the H(*) abstraction reaction of beta-neopentylcobalamin (beta-NpCbl) in ethylene glycol-d(0) and ethylene glycol-d(4). This is the first experimental test of Klinman's hypothesis using KIE data obtained at enzyme-relevant temperatures. The key data obtained are as follows: deuterium KIEs of 23.1 +/- 3.0 at 40 degrees C to 39.0 +/- 2.3 at 10 degrees C; an activation energy difference E(D) - E(H) of 3.1 +/- 0.3 kcal mol(-)(1); and a pre-exponential factor ratio A(H)/A(D) of 0.14 +/- 0.07. Moreover, our now three sets of data (NpCbl; AdoCbl; 8-MeOAdoCbl) are shown to lie on the same ln KIE vs 1/T linear plot yielding a set of enzyme-temperature-relevant, high-precision KIE, E(D) - E(H), and A(H)/A(D) data over a relatively large, 110 degrees C temperature range. Significantly, the enzyme-free solution KIE, E(D) - E(H), and A(H)/A(D) are identical within experimental error to those for methylmalonyl-CoA mutase. This finding leads to the conclusion that there is no enzymic enhancement of the tunneling in at least this B(12)-dependent enzyme. This B(12) enzyme does, however, exploit the same (unchanged) level of tunneling measured for the nonenzymic, Ado(*) solution H(*) abstraction reaction. A discussion is presented of the still open question of if this first experimental finding, of "no enzymic enhancement of tunneling" in one B(12)-dependent enzymic system, is likely to prove more general or not.  相似文献   

2.
Cyclooxygenases-1 and -2 are tyrosyl radical (Y·)-utilizing hemoproteins responsible for the biosynthesis of lipid-derived autocoids. COX-2, in particular, is a primary mediator of inflammation and believed to be up-regulated in many forms of cancer. Described here are first-of-a-kind studies of COX-2-catalyzed oxidation of the substrate analogue linoleic acid. Very large (≥20) temperature-independent deuterium kinetic isotope effects (KIEs) on the rate constant for enzyme turnover were observed, due to hydrogen atom abstraction from the bisallylic C-H(D) of the fatty acid. The magnitude of the KIE depends on the O(2) concentration, consistent with reversible H/D tunneling mediated by the catalytic Y·. At physiological levels of O(2), retention of the hydrogen initially abstracted by the catalytic tyrosine results in strongly temperature-dependent KIEs on O-H(D) homolysis, also characteristic of nuclear tunneling.  相似文献   

3.
The reaction of Ru(II)(acac)2(py-imH) (Ru(II)imH) with TEMPO(*) (2,2,6,6-tetramethylpiperidine-1-oxyl radical) in MeCN quantitatively gives Ru(III)(acac)2(py-im) (Ru(III)im) and the hydroxylamine TEMPO-H by transfer of H(*) (H(+) + e(-)) (acac = 2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole). Kinetic measurements of this reaction by UV-vis stopped-flow techniques indicate a bimolecular rate constant k(3H) = 1400 +/- 100 M(-1) s(-1) at 298 K. The reaction proceeds via a concerted hydrogen atom transfer (HAT) mechanism, as shown by ruling out the stepwise pathways of initial proton or electron transfer due to their very unfavorable thermochemistry (Delta G(o)). Deuterium transfer from Ru(II)(acac)2(py-imD) (Ru(II)imD) to TEMPO(*) is surprisingly much slower at k(3D) = 60 +/- 7 M(-1) s(-1), with k(3H)/k(3D) = 23 +/- 3 at 298 K. Temperature-dependent measurements of this deuterium kinetic isotope effect (KIE) show a large difference between the apparent activation energies, E(a3D) - E(a3H) = 1.9 +/- 0.8 kcal mol(-1). The large k(3H)/k(3D) and DeltaE(a) values appear to be greater than the semiclassical limits and thus suggest a tunneling mechanism. The self-exchange HAT reaction between Ru(II)imH and Ru(III)im, measured by (1)H NMR line broadening, occurs with k(4H) = (3.2 +/- 0.3) x 10(5) M(-1) s(-1) at 298 K and k(4H)/k(4D) = 1.5 +/- 0.2. Despite the small KIE, tunneling is suggested by the ratio of Arrhenius pre-exponential factors, log(A(4H)/A(4D)) = -0.5 +/- 0.3. These data provide a test of the applicability of the Marcus cross relation for H and D transfers, over a range of temperatures, for a reaction that involves substantial tunneling. The cross relation calculates rate constants for Ru(II)imH(D) + TEMPO(*) that are greater than those observed: k(3H,calc)/k(3H) = 31 +/- 4 and k(3D,calc)/k(3D) = 140 +/- 20 at 298 K. In these rate constants and in the activation parameters, there is a better agreement with the Marcus cross relation for H than for D transfer, despite the greater prevalence of tunneling for H. The cross relation does not explicitly include tunneling, so close agreement should not be expected. In light of these results, the strengths and weaknesses of applying the cross relation to HAT reactions are discussed.  相似文献   

4.
We calculate, down to low temperature and for different isotopes, the reaction rate constants for the hydrogen abstraction reaction H + H(3)COH → H(2) + CH(2)OH/CH(3)O. These explain the known abundances of deuterated forms of methanol in interstellar clouds, where CH(2)DOH can be almost as abundant as CH(3)OH. For abstraction from both the C- and the O-end of methanol, the barrier-crossing motion involves the movement of light hydrogen atoms. Consequently, tunneling plays a dominant role already at relatively high temperature. Our implementation of harmonic quantum transition state theory with on the fly calculation of forces and energies accounts for these tunneling effects. The results are in good agreement with previous semiclassical and quantum dynamics calculations (down to 200 K) and experimental studies (down to 295 K). Here we extend the rate calculations down to lower temperature: 30 K for abstraction from the C-end of methanol and 80 K for abstraction from the OH-group. At all temperatures, abstraction from the C-end is preferred over abstraction from the O-end, more strongly so at lower temperature. Furthermore, the tunneling behavior strongly affects the kinetic isotope effects (KIEs). D + H(3)COH → HD + CH(2)OH has a lower vibrationally adiabatic barrier than H + H(3)COH → H(2) + CH(2)OH, giving rise to an inverse KIE (k(H)/k(D) < 1) at high temperature, in accordance with previous experiments and calculations. However, since tunneling is more facile for the light H atom, abstraction by H is favored over abstraction by D below ~135 K, with a KIE k(H)/k(D) of 11.2 at 30 K. The H + D(3)COD → HD + CD(2)OD reaction is calculated to be much slower than the D + H(3)COH → HD + CH(2)OH, in agreement with low-temperature solid-state experiments, which suggests the preference for H (as opposed to D) abstraction from the C-end of methanol to be the mechanism by which interstellar methanol is deuterium-enriched.  相似文献   

5.
The solution structure of Cobeta-5'-deoxyadenosylimidazolylcobamide, Ado(Im)Cbl, the coenzyme B(12) analogue in which the axial 5,6-dimethylbenzimidazole (Bzm) ligand is replaced by imidazole, has been determined by NMR-restrained molecular modeling. A two-state model, in which a conformation with the adenosyl moiety over the southern quadrant of the corrin and a conformation with the adenosyl ligand over the eastern quadrant of the corrin are both populated at room temperature, was required by the nOe data. A rotation profile and molecular dynamics simulations suggest that the eastern conformation is the more stable, in contrast to AdoCbl itself in which the southern conformation is preferred. Consensus structures of the two conformers show that the axial Co-N bond is slightly shorter and the corrin ring is less folded in Ado(Im)Cbl than in AdoCbl. A study of the thermolysis of Ado(Im)Cbl in aqueous solution (50-125 degrees C) revealed competing homolytic and heterolytic pathways as for AdoCbl but with heterolysis being 9-fold faster and homolysis being 3-fold slower at 100 degrees C than for AdoCbl. Determination of the pK(a)'s for the Ado(Im)Cbl base-on/base-off reaction and for the detached imidazole ribonucleoside as a function of temperature permitted correction of the homolysis and heterolysis rate constants for the temperature-dependent presence of the base-off species of Ado(Im)Cbl. Activation analysis of the resulting rate constants for the base-on species show that the entropy of activation for Ado(Im)Cbl homolysis (13.7 +/- 0.9 cal mol(-1) K(-1)) is identical with that of AdoCbl (13.5 +/- 0.7 cal mol(-1) K(-1)) but that the enthalpy of activation (34.8 kcal mol(-1)) is 1.0 +/- 0.4 kcal mol(-1) larger. The opposite effect is seen for heterolysis, where the enthalpies of activation are identical but the entropy of activation is 5 +/- 1 cal mol(-1) K(-1) less negative for Ado(Im)Cbl. Extrapolation to 37 degrees C provides a rate constant for Ado(Im)Cbl homolysis of 2.1 x 10(-9) s(-1), 4.3-fold smaller than for AdoCbl. Combined with earlier results for the enzyme-induced homolysis of Ado(Im)Cbl by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii, the catalytic efficiency of the enzyme for homolysis of Ado(Im)Cbl at 37 degrees C can be calculated to be 4.0 x 10(8), 3.8-fold, or 0.8 kcal mol(-1), smaller than for AdoCbl. Thus, the bulky Bzm ligand makes at best a <1 kcal mol(-1) contribution to the enzymatic activation of coenzyme B(12).  相似文献   

6.
Enthalpies of activation, transition state (ts) geometries, and primary semiclassical (without tunneling) kinetic isotope effects (KIEs) have been calculated for eleven bimolecular identity proton-transfer reactions, four intramolecular proton transfers, four nonidentity proton-transfer reactions, eleven identity hydride transfers, and two 1,2-intramolecular hydride shifts at the HF/6-311+G, MP2/6-311+G, and B3LYP/6-311++G levels. We find the KIEs to be systematically smaller for hydride transfers than for proton transfers. This outcome is not the result of "bent" transition states, although extreme bending can lower the KIE. Rather, it is a consequence of generally greater total bonding in a hydride-transfer ts than in a proton-transfer ts, most prominently manifested as a reduced contribution from the zero-point vibrational energy difference between reactant and transition states (the DeltaZPVE factor) for hydride transfers relative to proton transfers. This and other differences between proton and hydride transfers are rationalized by modeling the central .C...H...C unit of a proton-transfer ts as a 4-electron, 3-center (4-e 3-c) system and the same unit of a hydride-transfer ts as a 2-e 3-c system. Inclusion of tunneling is most likely to magnify the observed differences between proton-transfer and hydride-transfer KIEs, leaving our qualitative conclusions unchanged.  相似文献   

7.
Type-III copper-containing enzymes have dicopper centers in their active sites and exhibit a novel capacity for activating aliphatic C-H bonds in various substrates by taking molecular oxygen. Dicopper enzyme models developed by Tolman and co-workers reveal exceptionally large kinetic isotope effects (KIEs) for the hydrogen transfer process, indicating a significant tunneling effect. In this work, we demonstrate that variational transition state theory allows accurate prediction of the KIEs and Arrhenius parameters for such model systems. This includes multidimensional tunneling based on state-of-the-art quantum-mechanical calculations of the minimum-energy path (MEP). The computational model of bis(μ-oxo)dicopper enzyme consists of 70 atoms, resulting in a 204-dimensional potential energy surface. The calculated values of E(a)(H) - E(a)(D), A(H)/A(D), and the KIE at 233 K are -1.86 kcal/mol, 0.51, and 28.1, respectively, for the isopropyl ligand system. These values agree very well with experimental values within the limits of experimental error. For the representative tunneling path (RTP) at 233 K, the pre- and post-tunneling configurations are 3.3 kcal/mol below the adiabatic energy maximum, where the hydrogen travels 0.54 ? by tunneling. We found that tunneling is very efficient for hydrogen transfer and that the RTP is very different from the MEP. It is mainly heavy atoms that move as the reaction proceeds from the reactant complex to the pretunneling configuration, and the hydrogen atom suddenly hops at that point.  相似文献   

8.
A fully microscopical simulation of the rate-limiting hydrogen abstraction catalyzed by soybean lipoxygenase-1 (SLO-1) has been carried out. This enzyme exhibits the largest, and weakly temperature dependent, experimental H/D kinetic isotope effect (KIE) reported for a biological system. The theoretical model used here includes the complete enzyme with a solvation shell of water molecules, the Fe(III)-OH- cofactor, and the linoleic acid substrate. We have used a hybrid QM(PM3/d-SRP)/MM method to describe the potential energy surface of the whole system, and the ensemble-averaged variational transition-state theory with multidimensional tunneling (EA-VTST/MT) to calculate the rate constant and the primary KIE. The computational results show that the compression of the wild-type active site enzyme results in the huge contribution of tunneling (99%) to the rate of the hydrogen abstraction. Importantly, the active site becomes more flexible in the Ile553Ala mutant reactant complex simulation (for which a markedly temperature dependent KIE has been experimentally determined), thus justifying the proposed key role of the gating promoting mode in the reaction catalyzed by SLO-1. Finally, the results indicate that the calculated KIE for the wild-type enzyme has an important dependence on the barrier width.  相似文献   

9.
High-level quantum chemistry calculations have been used to examine the hydrogen-abstraction reactions of diol dehydratase (DDH) in the context of both the catalytic mechanism and the enzyme dysfunction phenomenon termed suicide inactivation. The barriers for the catalytic hydrogen-abstraction reactions of ethane-1,2-diol and propane-1,2-diol are examined in isolation, as well as in the presence of various Br?nsted acids and bases. Modest changes in the magnitudes of the initial and final abstraction barriers are seen, depending on the strength of the acid or base, and on whether these effects are considered individually or together. The most significant changes (ca. 20 kJ mol(-1)) are found for the initial abstraction barrier when the spectator OH group is partially deprotonated. Kinetic isotope effects including Eckart tunneling corrections (KIEs) have also been calculated for these model systems. We find that contributions from tunneling are of a magnitude similar to that of the contributions from semiclassical theory alone, meaning that quantum effects serve to significantly accelerate the rate of hydrogen transfer. The calculated KIEs for the partially deprotonated system are in qualitative agreement with experimentally determined values. In complementary investigations, the ability of DDH to become deactivated by certain substrate analogues is examined. In all cases, the formation of a stable radical intermediate causes the hydrogen re-abstraction step to become an extremely endothermic process. The consequent inability of 5'-deoxyadenosyl radical to be regenerated breaks the catalytic cycle, resulting in the suicide inactivation of DDH.  相似文献   

10.
Intramolecular and intermolecular kinetic isotope effects (KIEs) were determined for hydroxylation of the enantiomers of trans-2-(p-trifluoromethylphenyl)cyclopropylmethane (1) by hepatic cytochrome P450 enzymes, P450s 2B1, Delta2B4, Delta2B4 T302A, Delta2E1, and Delta2E1 T303A. Two products from oxidation of the methyl group were obtained, unrearranged trans-2-(p-trifluoromethylphenyl)cyclopropylmethanol (2) and rearranged 1-(p-trifluoromethylphenyl)but-3-en-1-ol (3). In intramolecular KIE studies with dideuteriomethyl substrates (1-d(2)) and in intermolecular KIE studies with mixtures of undeuterated (1-d(0)) and trideuteriomethyl (1-d(3)) substrates, the apparent KIE for product 2 was consistently larger than the apparent KIE for product 3 by a factor of ca. 1.2. Large intramolecular KIEs found with 1-d(2) (k(H)/k(D) = 9-11 at 10 degrees C) were shown not to be complicated by tunneling effects by variable temperature studies with two P450 enzymes. The results require two independent isotope-sensitive processes in the overall hydroxylation reactions that are either competitive or sequential. Intermolecular KIEs were partially masked in all cases and largely masked for some P450s. The intra- and intermolecular KIE results were combined to determine the relative rate constants for the unmasking and hydroxylation reactions, and a qualitative correlation was found for the unmasking reaction and release of hydrogen peroxide from four of the P450 enzymes in the absence of substrate. The results are consistent with the two-oxidants model for P450 (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555), which postulates that a hydroperoxy-iron species (or a protonated analogue of this species) is a viable electrophilic oxidant in addition to the consensus oxidant, iron-oxo.  相似文献   

11.
Meyer MP  Klinman JP 《Chemical physics》2005,319(1-3):283-296
Soybean lipoxygenase-1 (SLO) catalyzes the oxidation of linoleic acid. The rate-limiting step in this transformation is the net abstraction of the pro-S hydrogen atom from the center of the 1,5-pentadienyl moiety in linoleic acid. The large deuterium kinetic isotope effect (KIE) for this step appears in the first order rate constant ((D)k(cat) = 81 ± 5 at T = 25 °C). Furthermore, the KIE and the rate for protium abstraction are weakly temperature dependent (E(A,D) - E(A,H) = 0.9 ± 0.2 kcal/mol and E(A,H) = 2.1 ± 0.2 kcal/mol, respectively). Mutations at a hydrophobic site about 13 ? from the active site Fe(III), Ile(553), induce a marked temperature dependence that varies roughly in accordance with the degree to which the residue is changed in bulk from the wild type Ile. While the temperature dependence for these mutants varies from the wild type enzyme, the magnitude of the KIE at 25 °C is on the same order of magnitude. A hydrogen tunneling model [Kuznetsov, A.M., Ulstrup, J. Can. J. Chem. 77 (1999) 1085-1096] is utilized to model the KIE temperature profiles for the wild type SLO and each Ile(553) mutant. Hydrogenic wavefunctions are modeled using harmonic oscillators and Morse oscillators in order to explore the effects of anharmonicity upon computed kinetic observables used to characterize this hydrogen transfer.  相似文献   

12.
The H/D primary kinetic isotope effect (KIE) for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) is calculated as a function of temperature employing ensemble-averaged variational transition-state theory with multidimensional tunneling. The calculated KIEs display only a small temperature dependence over the temperature range of 5 to 45 degrees C. We identify two key features that contribute to canceling most of the temperature dependence of the KIE that would be expected on the basis of simpler models. Related issues such as the isotope effects on Arrhenius preexponential factors, large differences between free energies of activation and Arrhenius activation energy, and fluctuations of effective barriers are also discussed.  相似文献   

13.
14.
Although there are considerable data demonstrating that quantum mechanical hydrogen tunneling (HT) occurs in both enzymatic and nonenzymatic systems, little data exist that address the question of whether enzymes enhance the amount of HT relative to the corresponding nonenzymatic reactions. To investigate whether 3-oxo-Delta (5)-steroid isomerase (ketosteroid isomerase, KSI) enhances HT relative to the nonenzymatic (acetate-catalyzed) isomerization of Delta (5)-androstene-3,17-dione ( 1) to Delta (4)-androstene-3,17-dione ( 3), alpha-secondary deuterium kinetic isotope effects (KIE) at C-6 of the steroid were determined for both the KSI- and acetate-catalyzed isomerizations. The normal intrinsic secondary KIE for both wild type (WT) KSI (1.073 +/- 0.023) and acetate (1.031 +/- 0.010) suggest the possibility of coupled motion (CM)/HT in both the enzymatic and nonenzymatic systems. To assess the contribution of CM/HT in these reactions, the secondary KIE were also measured under conditions in which deuterium instead of hydrogen is transferred. The decrease in secondary KIE for WT (1.035 +/- 0.011) indicates the presence of CM/HT in the enzymatic reaction, whereas the acetate reaction shows no change in secondary KIE for deuterium transfer (1.030 +/- 0.009) and therefore no evidence for CM/HT. On the basis of these experiments, we propose that KSI enhances the CM/HT contribution to the rate acceleration over the solution reaction. Active site mutants of KSI (Y14F and D99A) yield secondary KIEs similar to that of WT, indicating that mutations at the hydrogen-bonding residues do not significantly decrease the contribution of CM/HT to the KSI reaction.  相似文献   

15.
Rate constants for oxidations of benzyl alcohol-d0 and -d7 by oxoiron(IV) tetramesitylporphyrin radical cation perchlorate in acetonitrile were measured in single turnover kinetic studies. The kinetic isotope effect (kH/kD) increased from 28 at 23 degrees C to 360 at -30 degrees C due to extensive hydrogen atom tunneling that was analyzed in terms of a parabolic energy barrier to tunneling. Similarly, large KIE values were found for oxidations of ethylbenzene-d0 and -d10 at room temperature. The large KIE values are a function of the porphyrin identity, and porphyrins containing electron-withdrawing groups display normal KIEs. KIEs found under catalytic turnover conditions are somewhat smaller than those obtained in single turnover reactions. The results should serve as benchmarks for computational studies of C-H oxidations by porphyrin and heme-iron-oxo systems.  相似文献   

16.
The carbon kinetic isotope effects (KIEs) of the reactions of several light non-methane hydrocarbons (NMHC) with Cl atoms were determined at room temperature and ambient pressure. All measured KIEs, defined as the ratio of the Cl reaction rate constants of the light isotopologue over that of the heavy isotopologue (Clk12/Clk13) are greater than unity or normal KIEs. For simplicity, measured KIEs are reported in per mil according to Clepsilon=(Clk12/Clk13 -1)x1000 per thousand unless noted otherwise. The following average KIEs were obtained (all in per thousand): 10.73+/-0.20 (ethane), 6.44+/-0.14 (propane), 6.18+/-0.18 (methylpropane), 3.94+/-0.01 (n-butane), 1.79+/-0.42 (methylbutane), 3.22+/-0.17 (n-pentane), 2.02+/-0.40 (n-hexane), 2.06+/-0.19 (n-heptane), 1.54+/-0.15 (n-octane), 3.04+/-0.09 (cyclopentane), 2.30+/-0.09 (cyclohexane), and 2.56+/-0.25 (methylcyclopentane). Measurements of the 12C/13C KIEs for the Cl atom reactions of the C2-C8 n-alkanes were also made at 348 K, and no significant temperature dependence was observed. To our knowledge, these 12C/13C KIE measurements for alkanes+Cl reactions are the first of their kind. Simultaneous to the KIE measurement, the rate constant for the reaction of each alkane with Cl atoms was measured using a relative rate method. Our measurements agree with published values within+/-20%. The measured rate constant for methylcyclopentane, for which no literature value is available, is (2.83+/-0.11)x10-10 cm3 molecule-1 s-1, 1sigma standard error. The Clepsilon values presented here for the C2-C8 alkanes are an order of magnitude smaller than reported methane Clepsilon values (Geophys. Res. Lett., 2000, 27, 1715), in contrast to reported OHepsilon values for methane (J. Geophys. Res. (Atmos.), 2001, 106, 23, 127) and C2-C8 alkanes (J. Phys. Chem. A, 2004, 108, 11537), which are all smaller than 10 per thousand. This has important implications for atmospheric modeling of saturated NMHC stable carbon isotope ratios. 13C-structure reactivity relationship values (13C-SRR) for alkane-Cl reactions have been determined and are similar to previously reported values for alkane-OH reactions.  相似文献   

17.
Brasch NE  Haupt RJ 《Inorganic chemistry》2000,39(24):5469-5474
The reaction between coenzyme B12 (5'-deoxyadenosylcobalamin, AdoCbl) and tetrabutylammonium cyanide to give dicyanocobalamin, adenine, and 1-cyano-D-erythro-2,3-dihydroxy-4-pentenol has been examined in 92% N,N-dimethylformamide (DMF)/8% D2O. Under these conditions rate-determining Co-C heterolytic cleavage is preceded by rapid addition of cyanide to AdoCbl to form an intermediate, (beta-5'-deoxyadenosyl)(alpha-cyano)cobalamin ((beta-Ado)(alpha-CN)Cbl-), identified by 1H NMR spectroscopy. Rate constants have been determined by both 1H NMR and visible spectroscopies, with the latter showing saturation kinetics. The observed rate constant is pH-independent in the pH region studied, and replacing D2O by H2O increases it by ca. 10%. Increasing the percentage of D2O in the DMF/D2O solvent mixture also increases the reaction rate, and for D2O > or = 50% there is a change in the rate-determining step, with formation of the (beta-Ado)(alpha-CN)Cbl- intermediate becoming rate-determining. A mechanism in 92% DMF/8% D2O is proposed which involves rapid reversible formation of (beta-Ado)(alpha-CN)Cbl- from base-off AdoCbl plus cyanide, followed by rate-determining solvent-assisted cleavage of the Co-C bond of the intermediate and subsequent rapid addition of a second cyanide to give the products.  相似文献   

18.
Kinetic isotope effects (KIEs) and computer modeling using density functional theory were used to approximate the transition state of human 5'-methylthioadenosine phosphorylase (MTAP). KIEs were measured on the arsenolysis of 5'-methylthioadenosine (MTA) catalyzed by MTAP and were corrected for the forward commitment to catalysis. Intrinsic KIEs were obtained for [1'-(3)H], [1'-(14)C], [2'-(3)H], [4'-(3)H], [5'-(3)H(2)], [9-(15)N], and [Me-(3)H(3)] MTAs. The primary intrinsic KIEs (1'-(14)C and 9-(15)N) suggest that MTAP has a dissociative S(N)1 transition state with its cationic center at the anomeric carbon and insignificant bond order to the leaving group. The 9-(15)N intrinsic KIE of 1.039 also establishes an anionic character for the adenine leaving group, whereas the alpha-primary 1'-(14)C KIE of 1.031 indicates significant nucleophilic participation at the transition state. Computational matching of the calculated EIEs to the intrinsic isotope effects places the oxygen nucleophile 2.0 Angstrom from the anomeric carbon. The 4'-(3)H KIE is sensitive to the polarization of the 3'-OH group. Calculations suggest that a 4'-(3)H KIE of 1.047 is consistent with ionization of the 3'-OH group, indicating formation of a zwitterion at the transition state. The transition state has cationic character at the anomeric carbon and is anionic at the 3'-OH oxygen, with an anionic leaving group. The isotope effects predicted a 3'-endo conformation for the ribosyl zwitterion, corresponding to a H1'-C1'-C2'-H2' torsional angle of 33 degrees. The [Me-(3)H(3)] and [5'-(3)H(2)] KIEs arise predominantly from the negative hyperconjugation of the lone pairs of sulfur with the sigma (C-H) antibonding orbitals. Human MTAP is characterized by a late S(N)1 transition state with significant participation of the phosphate nucleophile.  相似文献   

19.
A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.  相似文献   

20.
Heme oxygenase (HO) catalyzes the O2 and NADPH/cytochrome P450 reductase-dependent conversion of heme to biliverdin, free iron ion, and CO through a process in which the heme participates as both dioxygen-activating prosthetic group and substrate. We earlier confirmed that the first step of HO catalysis is a monooxygenation in which the addition of one electron and two protons to the HO oxy-ferroheme produces ferric-alpha-meso-hydroxyheme (h). Cryoreduction/EPR and ENDOR measurements further showed that hydroperoxo-ferri-HO converts directly to h in a single kinetic step without formation of a Compound I. We here report details of that rate-limiting step. One-electron 77 K cryoreduction of human oxy-HO and annealing at 200 K generates a structurally relaxed hydroperoxo-ferri-HO species, denoted R. We here report the cryoreduction/annealing experiments that directly measure solvent and secondary kinetic isotope effects (KIEs) of the rate-limiting R --> h conversion, using enzyme prepared with meso-deuterated heme and in H2O/D2O buffers to measure the solvent KIE (solv-KIE), and the secondary KIE (sec-KIE) associated with the conversion. This approach is unique in that KIEs measured by monitoring the rate-limiting step are not susceptible to masking by KIEs of other processes, and these results represent the first direct measurement of the KIEs of product formation by a kinetically competent reaction intermediate in any dioxygen-activating heme enzyme.The observation of both solv-KIE(298) = 1.8 and sec-KIE(298) = 0.8 (inverse) indicates that the rate-limiting step for formation of h by HO is a concerted process: proton transfer to the hydroperoxo-ferri-heme through the distal-pocket H-bond network, likely from a carboxyl group acting as a general acid catalyst, occurring in synchrony with bond formation between the terminal hydroperoxo-oxygen atom and the alpha-meso carbon to form a tetrahedral hydroxylated-heme intermediate. Subsequent rearrangement and loss of H2O then generates h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号