首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two predominance-region diagrams for plutonium are illustrated. One diagram plots the pH vs. the equilibrium fraction of hexavalent plutonium. The other diagram plots the equilibrium fraction of tetravalent plutonium vs. the plutonium oxidation number. Both diagrams define the boundaries of the regions where tri-, tetra-, penta-, and hexavalent plutonium are the predominant species. In each diagram, the two principal triple points are located at the intersections of three predominance-region boundary lines.Los Alamos National Laboratory is operated by the University of California for the U.S. Department of Energy under Contract No. W-7405-ENG-36.  相似文献   

2.
Two predominance-region diagrams for plutonium are illustrated. One diagram plots the pH vs. the equilibrium fraction of hexavalent plutonium. The other diagram plots the equilibrium fraction of tetravalent plutonium vs. the plutonium oxidation number. Both diagrams define the boundaries of the regions where tri-, tetra-, penta-, and hexavalent plutonium are the predominant species. In each diagram, the two principal triple points are located at the intersections of three predominance-region boundary lines.Los Alamos National Laboratory is operated by the University of California for the U.S. Department of Energy under Contract No. W-7405-ENG-36.  相似文献   

3.
An empirical method for preparing a plutonium predominance-region diagram is illustrated by an example. The method estimates the boundaries of the forbidden, unique, and ambiguous regions as defined by the equilibrium fraction of hexavalent plutonium and the plutonium oxidation number.  相似文献   

4.
Summary A predominance-region diagram for aqueous plutonium can be prepared by plotting the equilibrium fractions of tetra- and hexavalent plutonium. An example illustrates how the triple points can be used to estimate hydrolysis constants.  相似文献   

5.
Four intrinsic predominance-region diagrams for aqueous plutonium are described. They are easily prepared from an existing diagram by changing the oxidation-state fractions on the axes of the diagram and renaming the predominance regions. Not all combinations of oxidation-state fractions can be used to prepare the diagrams.  相似文献   

6.
Reactions between plutonium trichloride and oxide ions were studied in the fused NaCl+CaCl2 equimolar mixture at 823 K, by potentiometry with an yttria-stabilised zirconia membrane electrode. Titration curve demonstrated the existence of a precipitated plutonium oxide (Pu2O3) with dissociation constant 10−17.5 (molality scale). The combination of this data with the standard potentials allowed to set up the potential–pO2− diagram of plutonium which summarises the properties of plutonium species in the melt.  相似文献   

7.
Charyulu MM  Rao VK  Natarajan PR 《Talanta》1984,31(12):1109-1111
A potentiometric method for the determination of plutonium is described, in which the plutonium is quantitatively oxidized to plutonium(VI) with sodium bismuthate in nitric acid medium, the excess of oxidant is destroyed chemically and plutonium(VI) is reduced to plutonium(IV) with a measured excess of iron(II), the surplus of which is back-titrated with dichromate. For 3–5 mg of plutonium the error is less than 0.2%. For submilligram quantities of plutonium in presence of macro-amounts of uranium the error is below 2.0%.  相似文献   

8.
Plutonium(IV) oxidation has been studied in 1 to 20 mol/1 HNO3 under 1 to 14 W/1 internal alpha-irradiation and at plutonium concentrations from 2 to 100 mmol/1. Curium isotopes have been used as the basic alpha-irradiation sources. It has been established that in the systems investigated both oxidation of plutonium(IV) and reduction of plutonium(VI) take place, resulting with time in reaching the equilibrium between plutonium(IV) and plutonium(VI). The presence of plutonium(IV) enhances the reduction of plutonium(VI). The rate constants for plutonium(IV) oxidation and plutonium(VI) reduction have been estimated and their dependences upon the concentrations of nitric acid, plutonium(IV) and plutonium(VI) as well as upon the dose rate investigated. An equation has been derived which permits to calculate the concentrations of plutonium(IV) and plutonium(VI) at any desired time.  相似文献   

9.
A novel extractant, namely, Benzodioxodiamide (BenzoDODA) has been synthesized and evaluated for its extraction behaviour towards plutonium and other elements present in the spent nuclear fuel. High separation factors for plutonium over other elements were observed, indicating the high selectivity of the extractant for plutonium. The extractant is quite promising for the selective separation of plutonium from dissolver solution and various acidic waste streams.  相似文献   

10.
Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium is developed for the recovery of uranium and plutonium present in spent fuel of fast breeder reactors (FBRs). Effect of pH on the solubility of carbonates of uranium and plutonium in ammonium carbonate medium is studied. Effect of mole ratios of uranium and plutonium as a function of uranium and plutonium concentration at pH 8.0–8.5 for effective separation of uranium and plutonium to each other is studied. Feasibility of reconversion of plutonium in carbonate medium is also studied. The studies indicate that uranium is selectively precipitated as AUC at pH 8.0–8.5 by adding ammonium carbonate solution leaving plutonium in the filtrate. Plutonium in the filtrate after acidified with concentrated nitric acid could also be precipitated as carbonate at pH 6.5–7.0 by adding ammonium carbonate solution. A flow sheet is proposed and evaluated for partitioning and reconversion of uranium and plutonium simultaneously in the FBR fuel reprocessing.  相似文献   

11.
Lee CG  Suzuki D  Esaka F  Magara M  Kimura T 《Talanta》2011,85(1):644-649
The fission track technique is a sensitive detection method for particles which contain radio-nuclides like 235U or 239Pu. However, when the sample is a mixture of plutonium and uranium, discrimination between uranium particles and plutonium particles is difficult using this technique. In this study, we developed a method for detecting plutonium particles in a sample mixture of plutonium and uranium particles using alpha track and fission track techniques. The specific radioactivity (Bq/g) for alpha decay of plutonium is several orders of magnitude higher than that of uranium, indicating that the formation of the alpha track due to alpha decay of uranium can be disregarded under suitable conditions. While alpha tracks in addition to fission tracks were detected in a plutonium particle, only fission tracks were detected in a uranium particle, thereby making the alpha tracks an indicator for detecting particles containing plutonium. In addition, it was confirmed that there is a linear relationship between the numbers of alpha tracks produced by plutonium particles made of plutonium certified standard material and the ion intensities of the various plutonium isotopes measured by thermo-ionization mass spectrometry. Using this correlation, the accuracy in isotope ratios, signal intensity and measurement errors is presumable from the number of alpha tracks prior to the isotope ratio measurements by thermal ionization mass spectrometry. It is expected that this method will become an effective tool for plutonium particle analysis. The particles used in this study had sizes between 0.3 and 2.0 μm.  相似文献   

12.
Studies on the individual potentiometric determination of uranium and plutonium in a single aliquot have been initiated recently in our laboratory. It was required to adapt the reported procedures (for the precise determination of uranium and plutonium individually when present together in a sample) at various stages to make them suitable for the successive application of the procedures to the same aliquot. Two alternative schemes are proposed in the present work. In the first, plutonium is determined by HClO4 oxidation followed by the determination of total uranium and plutonium by Zn(Hg) reduction. In the second, plutonium is determined by AgO oxidation following the determination of total uranium and plutonium by Zn(Hg) reduction. Amount of uranium is computed in both cases from the difference of two determinations. Precision for the assay of plutonium and uranium was found to be ±0.25% and ±0.35%, respectively, at milligram levels.  相似文献   

13.
A method was developed for the rapid dissolution of plutonium in soil by fusion with ammonium hydrogen sulfate, and the determination of plutonium content by ion exchange separation and alpha spectrometry. By this method, plutonium in environmental soil containing plutonium oxide in a soluble and/or insoluble form could successfully be determined.  相似文献   

14.
A new method of plutonium speciation in large volume of sea water was developed by using adsorption of Pu(IV)-Xylenol Orange chelate and Pu-Arsenazo chelate on XAD-2 resin, respectively. The tetravalent plutonium ion reacts selectively with Xylenol Orange in acid solution and that adsorbed on XAD-2 resin. Total plutonium can be collected onto the resin in the form of its Arsenazo-III complex. The determination of plutonium then was carried out by alpha-ray spectrometric method after decomposition of organic complexes and ion exchange separation. The present method is confirmed for convenient and rapid preconcentration procedure for plutonium shipboard chemistry.  相似文献   

15.
A method for the sequential determination of thorium and plutonium has been developed. In the sample solution containing thorium and plutonium, thorium is first determined by complexometric titration with EDTA and then in the same solution plutonium is determined by redox titration employing potentiometry. Prior to the determination of plutonium, EDTA is destroyed by fuming with concentrated HClO4. Thorium is determined at 10 mg level and plutonium at 1 mg level with precision and accuracy of better than ±0.5%.  相似文献   

16.
Visible and near-infrared absorption spectrophotometry provides a satisfactory method for the study of the chemical reactions of plutonium in fused LiCl-KCl eutectic with Cl2, HCl or O2. Comparison of the spectra obtained with those of known species leads to the identification of PuCl62- and PuO2Cl42- in the melt. A new potential/pO2- diagram is presented; this allows interpretation of the various observed chemical reactions.  相似文献   

17.
18.
A derivative spectrophotometric method has been developed for the simultaneous determination of uranium and plutonium at trace levels in various process streams in 3M HNO3 medium using Arsenazo III. The method was developed with the objective of measuring both uranium and plutonium in the same aliquot in fairly high burn-up fuels. The first derivative absorbances of the uranium and plutonium Arsenazo III complexes at 632 nm and 606.5 nm, respectively, were used for their quantification. Mixed aliquots of uranium (20–28 μg/ml) and plutonium (0.5–1.5 μg/ml) with U/Pu ratio varying from 25 to 40 were analysed using this technique. A relative error of about 5% was obtained for uranium and plutonium. The method is simple, fast and does not require separation of uranium and plutonium. The effect of presence of many fission products, corrosion products and complexing anions on determination of uranium and plutonium was also studied.  相似文献   

19.
To investigate the formation of mobile organic plutonium, we analyzed the plutonium contents of the fulvic (FA) and humic (HA) acids from the soil samples obtained at Nishiyama, Nagasaki, Japan. The percentages of the plutonium bound strongly to HA and to FA vs. the total plutonium in the soil were 5–10% and 1%, respectively, at the depth of 0–0.1 m, much higher values than those of137Cs and uranium. After being weathered for 51 years under a temperate climate, the initial highfired oxides of fallout plutonium have become as chemically reactive plutonium from nuclear fuel reprocessing plants.  相似文献   

20.
An improved method for the determination of plutonium in an aliquot using cerium/IV/ as an oxidant is reported. Plutonium is oxidized quantitatively to plutonium/VI/ in nitric acid medium by cerium/IV/, the excess of which is chemically destroyed in a single step by hydrochloric acid. Plutonium/VI/ is then reduced to plutonium/IV/ with a known amount of Fe/II/, the excess of which is back titrated potentiometrically with standard dichromate. Results of analysis of 3–5 mg amounts of plutonium in aliquots containing standard plutonium nitrate solution are reliable within 0.2%. Effect of the presence of some relevant foreign ions has been studied. The application of the method for the analysis of mixtures containing various amounts of uranium and plutonium has been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号