首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quality of combinatorial libraries determines the success of biological screening in drug discovery programs. In this paper, we evaluate and compare various methods for measuring identity, purity, and quantity (yield) of combinatorial libraries. Determination of quantitative purity reveals the true library quality and often indicates potential quality problems before full-scale library production. The relative purity can be determined for every member in a large library in a high-throughput mode, but must be cautiously interpreted. In particular, many impurities are not observable by relative purity measurements using detectors such as UV(214), UV(254), and evaporative light-scattering detection. These "invisible" impurities may constitute a significant portion of the sample weight. We found that TFA, plastic extracts, inorganic compounds, and resin washout are among these impurities. With compelling evidence, we reach a conclusion that purification is the only way to remove "invisible" impurities and improve the quantitative purity of any compound even though some compounds may have a high relative purity before purification.  相似文献   

2.
The generation of diverse chemical libraries using the "libraries from libraries" concept by combining solid-phase and solution-phase methods is described. The central features of the approaches presented are the use of solid-phase synthesis methods for the generation of a combinatorial polyamine library. Following cleavage from the resin with HF, the polyamine library was reacted with ethyl nitrite in the solution phase to yield the desired nitrosamine library in good yield and purity. The approaches described enable the efficient syntheses of individual nitrosamines as well as mixture-based nitrosamine libraries.  相似文献   

3.
The rapid evolution of combinatorial chemistry in recent years has led to a dramatic improvement in synthetic capabilities. The goal is to accelerate the discovery of molecules showing affinity against a target, such as an enzyme or a receptor, through the simultaneous synthesis of a great number of structurally diverse compounds. This is done by generating combinatorial libraries containing as many as hundreds or thousands of compounds. The need to test all these compounds led to the development of high-throughput screening (HTS) techniques, and also high-throughput analytical techniques capable of assessing the occurrence, structure and purity of the products. In order to be applied effectively to the characterization of combinatorial libraries, an analytical technique must be adequately sensitive (to analyse samples which are typically produced in nanomole amounts or less), fast, affordable and easy to automate (to minimize analysis time and operator intervention). Although no method alone can meet all the analytical challenges underlying this task, the recent progress in mass spectrometric (MS) instrumentation renders this technique an essential tool for scientists working in this area. We describe here relevant aspects of the use of MS in combinatorial technologies, such as current methods of characterization, purification and screening of libraries. Some examples from our laboratory deal with the analysis of pooled oligomeric libraries containing n x 324(n = 1, 2) compounds, using both on-line high-performance liquid chromatography/MS with an ion trap mass spectrometer, and direct infusion into a triple quadrupole instrument. In the first approach, MS and product ion MS/MS with automatic selection of the precursor were performed in one run, allowing library confirmation and structural elucidation of unexpected by-products. The second approach used MS scans to characterize the entire library and also precursor ion and neutral loss scans to detect selectively components with given structural characteristics.  相似文献   

4.
A diverse set of 16 high-throughput organic synthesis libraries, consisting of 48 samples per library, has been purified by both preparative supercritical fluid chromatography (SFC) and preparative high-performance liquid chromatography (HPLC). This paper details the relative effectiveness of these two purification techniques in terms of success, yield, and purity of final product.  相似文献   

5.
液相组合化学   总被引:5,自引:0,他引:5  
许家喜  麻远 《化学通报》2002,65(3):145-152
综述了液相组合化学的研究进展,重点介绍了液相组合合成中的分离纯化方法和合成方法策略,基本分离纯化方法包括利用固相载体协助分离纯化法,相萃取分离纯化法和色谱法,主要合成方法策略有平行合成策略和索引合成策略。  相似文献   

6.
Amine libraries and their derivatives are important targets for high throughput synthesis because of their versatility as medicinal agents and agrochemicals. As a part of our efforts towards automated chemical library synthesis, a titanium(IV) isopropoxide mediated solution phase reductive amination protocol was successfully translated to automation on the Trident(TM) library synthesizer of Argonaut Technologies. An array of 24 secondary amines was prepared in high yield and purity from 4 primary amines and 6 carbonyl compounds. These secondary amines were further utilized in a split synthesis to generate libraries of ureas, amides and sulfonamides in solution phase on the Trident(TM). The automated runs included 192 reactions to synthesize 96 ureas in duplicate and 96 reactions to synthesize 48 amides and 48 sulfonamides. A number of polymer-assisted solution phase protocols were employed for parallel work-up and purification of the products in each step.  相似文献   

7.
Early results from screening combinatorial libraries have been disappointing with libraries either failing to deliver the improved hit rates that were expected or resulting in hits with characteristics that make them undesirable as lead compounds. Consequently, the focus in library design has shifted toward designing libraries that are optimized on multiple properties simultaneously, for example, diversity and "druglike" physicochemical properties. Here we describe the program MoSELECT that is based on a multiobjective genetic algorithm and which is able to suggest a family of solutions to multiobjective library design where all the solutions are equally valid and each represents a different compromise between the objectives. MoSELECT also allows the relationships between the different objectives to be explored with competing objectives easily identified. The library designer can then make an informed choice on which solution(s) to explore. Various performance characteristics of MoSELECT are reported based on a number of different combinatorial libraries.  相似文献   

8.
Combinatorial chemistry has produced libraries of millions of compounds in the last decade. Screening of those compounds, unfortunately, has not yet yielded as many new drug candidates as initially expected. Among a number of possible reasons, one is that many libraries combinatorial chemistry produced in the early periods are of the nature of linear, flat, and flexible molecules such as peptides and oligonucleotides, which do not have the desired properties to selectively interact with their targets to yield high quality hits and leads. In order to increase the number of quality hits and leads, rigid, structural featurerich and drug-like compound libraries are highly desirable. Design and development of structural features-rich and natural product-like combinatorial libraries, as well as high speed library production using modern solution and solid phase synthesis techniques such as IRORI's Directed Sorting technology, will be discussed.  相似文献   

9.
Solution-phase parallel synthesis has had a profound impact on the speed of compound synthesis delivering relatively pure compounds (>80%) in short order. However, to develop structure activity relationships (SAR) for a compound series, each library member should preferably be >95% pure. Historically, achieving and quantifying such high-purity criteria for each library member proved to be the slow step for most lead discovery groups. To address this issue, significant modifications have been made to a commercial Agilent preparative LC/MS system to allow for the general mass-guided purification of diverse compound libraries. The custom modifications include (1) the "DMSO slug" approach for the purification of samples with poor solubility; (2) an active splitter to reduce system back-pressure, reduce the delay volume, and allow for a variable split ratio; (3) a sample loading pump for the quick purification of large, dilute samples; (4) a preparative column-selection valve to quickly change column selectivity or sample loading; and (5) an analytical injector with a separate flow path for crude reaction or fraction analyses.  相似文献   

10.
Supercritical fluid chromatography (SFC) has recently been implemented within our analytical technologies department as a purity assessment and purification tool to complement HPLC for isomer and chiral separations. This report extends the previous work to achiral analysis and purification. This internal evaluation explores the potential impact SFC can have on high throughput, batch purification. Achiral methods have been optimised and batches of compounds purified using a retention time mapping strategy. Here the preparative retention time is predicted from a standard calibration curve and fraction windows set to ensure the peak of interest is collected in one of the four available fraction positions. In this contribution, a completely indirect scale up strategy is applied using totally independent analytical and preparative methods. This novel approach allows for fast analytical purity analysis without compromising the ability to scale up to the preparative system. The benefits and limitations of SFC for batch purification are described in comparison to HPLC across a set of standard compounds and a set of 90 research compounds.  相似文献   

11.
12.
In the computer-aided drug design, in order to find some new leads from a large library of compounds, the pattern recognition study of the diversity and similarity assessment of the chemical compounds is required; meanwhile in the combinatorial library design, more attention is given to design target focusing library along with diversity and drug-likeness criteria. This review presents the current state-of-art applications of Kohonen self-organizing maps (SOM) for studying the compounds pattern recognition, comparing the property of molecular surfaces, distinguishing drug-like and nondrug-like molecules, splitting a dataset into the proper training and test sets before constructing a QSAR (Quantitative Structural-Activity Relationship) model, and also for the combinatorial libraries comparison and the combinatorial library design. The Kohonen self-organizing map will continue to play an important role in drug discovery and library design.  相似文献   

13.
We have developed a high-throughput purification system to purify combinatorial libraries at a 50-100-mg scale with a throughput of 250 samples/instrument/day. We applied an accelerated retention window method to shorten the purification time and targeted one fraction per injection to simplify data tracking, lower QC workload, and simplify the postpurification processing. First, we determined the accurate retention time and peak height for all compounds using an eight-channel parallel LC/UV/MS system, and calculated the specific preparative HPLC conditions for individual compounds. The preparative HPLC conditions include the compound-specific gradient segment for individual compounds with a fixed gradient slope and the compound-specific UV or ELSD threshold for triggering a fraction collection device. A unique solvent composition or solvent strength was programmed for each compound in the preparative HPLC in order to elute all compounds at the same target time. Considering the possible deviation of the predicted retention time, a 1-min window around the target time was set to collect peaks above a threshold based on UV or ELSD detection. Dual column preparative instruments were used to maximize throughput. We have purified more than 500 000 druglike compounds using this system in the past 3 years. We report various components of this high-throughput purification system and some of our purification results.  相似文献   

14.
The goal of combinatorial chemistry is to simultaneously synthesize sets of compounds possessing properties that are then distinguished through screening. As the size of a compound set increases, data analysis becomes more challenging. Analysis of Variance (ANOVA) is an accepted statistical method that offers a straightforward solution to this problem. Two steps encountered by combinatorial scientists appear well suited to ANOVA: the prediction of synthetic outcomes (purity and yield) of set members and the analysis of screening data to identify combinations of reagent inputs that result in molecules with a desired property. To illustrate, a subset of a combinatorial array, referred to as a reaction rehearsal set, is evaluated to create a model predictive of the individual synthetic outcomes of the full matrix. In a second exercise, the biochemical screening data obtained from a combinatorial library is analyzed to identify reagent interactions that result in molecules possessing the sought activity.  相似文献   

15.
16.
Diversity-oriented synthesis (DOS) and fluorous mixture synthesis (FMS) are two aspects of combinatorial chemistry. DOS generates library scaffolds with skeletal, substitution, and stereochemistry variations, whereas FMS is a highly efficient tool for library production. The combination of these two aspects in solution-phase synthesis of two novel heterocyclic compound libraries is presented in this paper. Mixtures of different fluorous amino acids undergo [3 + 2] cycloadditions followed by postcondensation reactions. The mixtures are then demixed by fluorous HPLC. Fluorous tags are removed by cyclization to afford hydantoin- and benzodiazepinedione-fused heterocyclic compounds as individual, pure, and structurally defined molecules. The application of MS-directed HPLC purification and parallel four-channel LC/MS analysis further increases the efficiency of FMS.  相似文献   

17.
Automated medicinal chemistry (parallel chemistry) has become an integral part of the drug-discovery process in almost every large pharmaceutical company. Parallel array synthesis of individual organic compounds has been used extensively to generate diverse structural libraries to support different phases of the drug-discovery process, such as hit-to-lead, lead finding, or lead optimization. In order to guarantee effective project support, efficiency in the production of compound libraries has been maximized. As a consequence, also throughput in chromatographic purification and analysis has been adapted. As a recent trend, more laboratories are preparing smaller, yet more focused libraries with even increasing demands towards quality, i.e. optimal purity and unambiguous confirmation of identity. This paper presents an automated approach how to combine effective purification and structural conformation of a lead optimization library created by microwave-assisted organic synthesis. The results of complementary analytical techniques such as UHPLC-HRMS and NMR are not only regarded but even merged for fast and easy decision making, providing optimal quality of compound stock. In comparison with the previous procedures, throughput times are at least four times faster, while compound consumption could be decreased more than threefold.  相似文献   

18.
This paper focuses on the technical aspects of chemical screening from 384-well plate nano-scale single-bead combinatorial libraries. The analytical technique utilized is a combination of capillary liquid chromatography with ultraviolet detection and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The HPLC/MALDI-MS hyphenation is achieved by means of a micro-fraction collector with a peak detection system that automatically collects the peaks onto the MALDI targets for subsequent characterization. Several experimental parameters such as type of 384-well plate, well-plate sealing foils, and a column-switching procedure were investigated using a small test library of nine components. Additionally, the influence of different MALDI matrices, different MALDI targets and sample-spotting techniques on the MALDI detection sensitivity as well as the ruggedness and sample throughput capacity of this technique were studied. Optimum results for the analytes investigated were obtained with 2,5-dihydroxybenzoic acid using on-line mixing of HPLC effluent and matrix solution. To demonstrate the potential of this capillary HPLC/MALDI-TOFMS method, its application to several single-bead libraries was investigated. The instrumental method allowed for the rapid identification and purity assessment of combinatorial libraries with detection limits down to the higher femtomole level using both UV detection and MALDI mass spectrometry.  相似文献   

19.
Screening of more than 2 million compounds comprising 41 distinct encoded combinatorial libraries revealed a novel structural class of p38 mitogen-activated protein (MAP) kinase inhibitors. The methodology used for screening large encoded combinatorial libraries combined with the statistical interpretation of screening results is described. A strong preference for a particular triaminotriazine aniline amide was discovered based on biological activity observed in the screening campaign. Additional screening of a focused follow-up combinatorial library yielded data expanding the unique combinatorial SAR and emphasizing an extraordinary preference for this particular building block and structural class. The preference is further highlighted when the p38 inhibitor data set is compared to data obtained for a panel of other kinases.  相似文献   

20.
The development and use of a new assay system for the simultaneous determination of identity, purity, and concentration of sample components from combinatorial libraries produced by parallel synthesis are described. The system makes use of high-performance liquid chromatography with UV/vis photodiode array (PDA), evaporative light scattering (ELSD), chemiluminescent nitrogen (CLND), and time-of-flight mass spectrometer (TOFMS) detectors (HPLC-PDA-ELSD-CLND-TOFMS). Although these detectors have previously been utilized separately for the analysis of combinatorial chemistry libraries, the use of TOFMS along with CLND provides a synergistic combination enabling target and side-product structures to be identified and their concentrations and purities determined in a single experiment from a solution containing microgram levels of material. The CLND was found to give a linear response based on the number of moles of nitrogen present. Therefore, if the number of nitrogens per molecule is known, the concentration of each nitrogen-containing sample component may be determined utilizing an unrelated co-injected standard. A molecular formula for an impurity may often be calculated from the exact mass determined by the TOFMS and knowledge of the chemistry involved. Thus, if the sample components contain nitrogen, the concentration of every identified HPLC peak may be determined even in the absence of primary standards. This combination of detectors enabled the characterization of both target compounds and byproducts in combinatorial libraries, allowing the optimization of library synthetic procedures. This system was also used to survey the quality of libraries, enabling the selection of the best libraries for screening. This method also facilitated the characterization of samples from combinatorial libraries found as hits in high-throughput screening to establish the potency of the leads based on their actual concentration. In addition, concentrations and potencies of impurities were determined after identification of their structures, utilizing exact mass data, determination of charge states, and knowledge of the synthetic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号