首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanogels are swollen nanosized networks composed of hydrophilic or amphiphilic polymer chains. They are developed as carriers for the transport of drugs, and can be designed to spontaneously incorporate biologically active molecules through formation of salt bonds, hydrogen bonds, or hydrophobic interactions. Polyelectrolyte nanogels can readily incorporate oppositely charged low‐molecular‐mass drugs and biomacromolecules such as oligo‐ and polynucleotides (siRNA, DNA) as well as proteins. The guest molecules interact electrostatically with the ionic polymer chains of the gel and become bound within the finite nanogel. Multiple chemical functionalities can be employed in the nanogels to introduce imaging labels and to allow targeted drug delivery. The latter can be achieved, for example, with degradable or cleavable cross‐links. Recent studies suggest that nanogels have a very promising future in biomedical applications.  相似文献   

2.
The aim of this study is to design a polymeric nanogel system with tailorable degradation behavior. To this end, hydroxyethyl methacrylate‐oligoglycolates‐derivatized poly(hydroxypropyl methacrylamide) (pHPMAm‐Gly‐HEMA) and hydroxyethyl methacrylamide‐oligoglycolates‐derivatized poly(hydroxyethyl methacrylamide) (pHEMAm‐Gly‐HEMAm) are synthesized and characterized. pHEMAm‐Gly‐HEMAm shows faster hydrolysis rates of both carbonate and glycolate esters than the same ester groups of pHPMAm‐Gly‐HEMA. pHEMAm‐Gly‐HEMAm nanogels have tailorable degradation kinetics from 24 h to more than 4 d by varying their crosslink densities. It is shown that the release of a loaded macromolecular model drug is controlled by degradation of nanogels. The nanogels show similar cytocompatibility as PLGA nanoparticles and are therefore considered to be attractive systems for drug delivery.

  相似文献   


3.
Reflux precipitation polymerization (RPP) represents an effective approach that enables to prepare various types of polymeric nanogels with precise control over the morphology and structure. Owing to facile loading or modification by a variety of functional moieties, rationally designed nanogels pose the possibility to attain a platform for tailoring functional properties that could be widely used for various biomedical applications, such as multifunctional drug delivery, enrichment of functional peptides, separation of specific proteins, as well as detection of circulating tumor cells. This feature article highlights RPP as a promising polymerization strategy that provides access to facile generation of modular nanostructures or multifunctional properties in a diverse range of biomedical applications, proving that RPP has great potential to become one of the most attractive polymerization techniques in polymer chemistry.  相似文献   

4.
Despite being highly recognized as an antitumor candidate due to its high potency in binding to DNA topoisomerase I and inhibiting of DNA relegation, full clinical application of camptothecin is unfortunately hampered by its poor solubility in aqueous medium and by the adverse effects caused by its hydrolyzed product under physiological conditions. In an attempt to increase its effective solubility, nanomicelles formed through self-assembly of copolymers by polymer-drug conjugate or by physical envelopment have recently been established to improve the efficacy of many drugs. This review provides the most up-to-date information available relating novel nanomicelles technology to the improvement and realization of the full potential of camptothecin. In particular, physicochemical and biological properties of camptothecin and its derivatives, the controlled factors of micelle formation, the techniques of drug encapsulation, and the structure-properties of nanomicelles are elucidated and discussed. Undoubtedly, polymer nanomicelle carriers can be selectively delivered to tumors via the enhanced permeability and retention effect. Moreover, micelles with smart functions such as stimulus-responsive and specific drug targeting may enhance the activity of potent bioactive compounds, facilitating their clinical applications.  相似文献   

5.
The effect of branching point structures and densities is studied between azido‐containing hyperbranched polymers and cross‐linked nanogels on their loading efficiency of alkynyl‐containing dendron molecules. Hyperbranched polymers that contained “T”‐shaped branching linkage from which three chains radiated out and cross‐linked nanogels that contained “X”‐shaped branching linkage with four radiating chains are synthesized in microemulsion using either atom transfer radical polymerization (ATRP) or conventional radical polymerization (RP) technique. Both polymers have similar density of azido groups in the structure and exhibit similar hydrodynamic diameter in latexes before purification. Subsequent copper‐catalyzed azide–alkyne cycloaddition reactions between these polymers and alkynyl‐containing dendrons in various sizes (G1–G3) demonstrate an order of dendron loading efficiencies (i.e., final conversion of alkynyl‐containing dendron) as hyperbranched polymers > nanogels synthesized by ATRP > nanogels synthesized by RP. Decreasing the branching density or using smaller dendron molecules increases the click efficiency of both polymers. When G2 dendrons with a molecular weight of 627 Da are used to click with the hyperbranched polymers composed of 100% inimer, a maximum loading efficiency of G2 in the loaded hyperbranched polymer is 58% of G2 by weight. These results represent the first comparison between hyperbranched polymers and cross‐linked nanogels to explore the effect of branching structures on their loading efficiencies.

  相似文献   


6.
7.
Novel redox‐responsive polymeric nanogels that allow highly efficient enzyme encapsulation and reversible modulation of enzyme activity are developed. The nanogel synthesis and encapsulation of enzyme are performed simultaneously via in situ crosslinking of pyridyldisulfide‐functionalized water‐soluble reactive copolymers, which are synthesized via reversible addition–fragmentation chain transfer copolymerization. Obtained nanogels with loaded cellulase demonstrate very good colloidal stability in aqueous solutions. The enzymatic activity of cellulase is greatly reduced when encapsulated in the nanogels and rapidly recovered in 10 × 10−3 m dithiothreitol solution. Fluorescence resonance energy transfer (FRET)‐based experiments indicate that the recovered enzymatic activity is mainly ascribed to the release of the enzyme due to the degradation of the disulfide crosslinking network after addition of dithiothreitol (DTT), instead of the enhanced substrate transport rate. The developed enzyme immobilization method opens new possibilities for reversible activation/deactivation of enzymes and opens up new directions for targeted protein therapy and biotechnology applications.

  相似文献   


8.
One limitation of current biodegradable polymeric nanoparticles is their inability to effectively encapsulate and sustainably release proteins while maintaining protein bioactivity. Here we report the engineering of PLGA–polycation nanoparticles with a core–shell structure that act as a robust vector for the encapsulation and delivery of proteins and peptides. The optimized nanoparticles can load high amounts of proteins (>20 % of nanoparticles by weight) in aqueous solution without organic solvents through electrostatic interactions by simple mixing, thereby forming nanospheres in seconds with diameters <200 nm. The relationship between nanosphere size, surface charge, PLGA–polycation composition, and protein loading is also investigated. The stable nanosphere complexes contain multiple PLGA–polycation nanoparticles, surrounded by large amounts of protein. This study highlights a novel strategy for the delivery of proteins and other relevant molecules.  相似文献   

9.
Simple construction and manipulation of low‐molecular‐weight supramolecular nanogels, based on the introduction of multiple hydrogen bonding interactions, with the desired physical properties to achieve effective and safe delivery of drugs for cancer therapy remain highly challenging. Herein, a novel supramolecular oligomer cytosine (Cy)‐polypropylene glycol containing self‐complementary multiple hydrogen‐bonded Cy moieties is developed, which undergoes spontaneous self‐assembly to form nanosized particles in an aqueous environment. Phase transitions and scattering studies confirm that the supramolecular nanogels can be readily tailored to obtain the desired phase‐transition temperature and temperature‐induced release of the anticancer drug doxorubicin (DOX). The resulting nanogels exhibit an extremely high load carrying capacity (up to 24.8%) and drug‐entrapment stability, making the loading processes highly efficient. Importantly, in vitro cytotoxicity assays indicate that DOX‐loaded nanogels possess excellent biosafety for drug delivery applications under physiological conditions. When the environmental temperature is increased to 40 °C, DOX‐loaded nanogels trigger rapid DOX release and exert cytotoxic effects, significantly reducing the dose required compared to free DOX. Given its simplicity, low cost, high reliability, and efficiency, this newly developed temperature‐responsive nanocarrier has highly promising potential for controlled release drug delivery systems.

  相似文献   


10.
11.
Thermoresponsive polymers change their physical properties as the temperature is changed and have found extensive use in a number of fields, especially in tissue engineering and in the development of drug delivery systems. The synthesis of a novel core–shell nanogel composed of N‐isopropylacrylamide and sulfobetaine by reversible addition fragmentation chain transfer polymerization is reported. The core–shell architecture of the nanogels is confirmed using energy dispersive X‐ray spectroscopy in scanning transmission electron microscopy. These nanogels exhibit dual thermoresponsive behavior, i.e., the core of the nanogel exhibits lower critical solution temperature, while the shell displays upper critical solution temperature behavior. Transition temperatures can be easily tuned by changing the molecular weight of the constituent polymer. These nanogels can be efficiently used in temperature‐triggered delivery of therapeutic proteins and drugs.  相似文献   

12.
Antimicrobial nanogels, aggregates, and films are prepared by complexation of the antiseptic and bacteriostatic agent chlorhexidine (CHX) for medical and dental applications. A series of α‐, β‐, and γ‐cyclodextrin methacrylate (CD‐MA) containing hydrophobic poly(methyl methacrylate) (PMMA) based nanogels are loaded quantitatively with CHX in aqueous dispersion. The results show that CHX is enhancedly complexed by the use of CD‐MA domains in the particles structure. β‐CD‐MA nanogels present the highest uptake of CHX. Furthermore, it is observed that the uptake of CHX in nanogels is influenced by the hydrophobic PMMA structure. CHX acts as external cross‐linker of nanogels by formation of 1:2 (CHX:CD‐MA) inclusion complexes of two β‐CD‐MA units on the surfaces of two different nanogels. The nanogels adsorb easily onto glass surfaces by physical self‐bonding and formation of a dense crosslinked nanogel film. Biological tests of the applied CHX nanogels with regard to antimicrobial efficiency are successfully performed against Staphylococcus aureus .

  相似文献   


13.
Protein nanogels have found a wide variety of applications, ranging from biocatalysis to drug/protein delivery. However, in practical applications, proteins in nanogels may suffer from enzymic hydrolysis and denaturation. Inspired by the structure and functionalities of the fowl eggshells, biomimetic mineralization of protein nanogels was studied in this research. Protein nanogels with embedded porcine pancreas lipase (PPL) in the cross-linked nanostructures were synthesized through the thiol–disulfide reaction between thiol-functionalized PPL and poly(N-isopropylacrylamide) with pendant pyridyl disulfide groups. The nanogels were further reacted with reduced bovine serum albumin (BSA) and BSA molecules were coated on the nanogels. Mineralization of BSA leads to the synthesis of biomineralized shells on the nanogels. With the growth of CaCO3 on the shells, the nanogels aggregate into suprastructures. Thermogravimetric analysis, XRD, dynamic light scattering, and TEM were employed to study the mechanism of the biomineralization process and analyze the structures of the mineralized nanogels. The biomineralized shells can effectively protect the PPL molecules from hydrolysis by trypsin; meanwhile, the nanosized channels on the mineralized shells allow the transport of small-molecule substrates across the shells. Bioactivity measurements indicate that PPL in the nanogels maintains more than 80 % bioactivity after biomineralization.  相似文献   

14.
A rational design of magnetic capturing nanodevices, based on a specific interaction with circulating tumor cells (CTCs), can advance the capturing efficiency and initiate the development of modern smart nanoformulations for rapid isolation and detection of these CTCs from the bloodstream. Therefore, the development and evaluation of magnetic nanogels (MNGs) based on magnetic nanoparticles and linear thermoresponsive polyglycerol for the capturing of CTCs with overexpressed transferrin (Tf+) receptors has been presented in this study. The MNGs are synthesized using a strain‐promoted “click” approach which has allowed the in situ surface decoration with Tf–polyethylene glycol (PEG) ligands of three different PEG chain lengths as targeting ligands. An optimal value of around 30% of cells captures is achieved with a linker of eight ethylene glycol units. This study shows the potential of MNGs for the capture of CTCs and the necessity of precise control over the linkage of the targeting moiety to the capturing device.

  相似文献   


15.
Direct delivery of protein suffers from their in vitro and in vivo instability, immunogenicity, and a relatively short half‐life within the body. To overcome these challenges, pH and glucose dual‐responsive biodegradable nanogels comprised of dextran and poly(L‐glutamic acid)‐g‐methoxy poly‐(ethylene glycol)/phenyl boronic acid (PLG‐g‐mPEG/PBA) are designed. The cross‐linked network imparted drug‐loading efficacy of α‐amylase up to 55.6% and hyaluronidase up to 29.1%. In vitro protein release profiles reveal that the release of protein is highly dependent on the pH or glucose concentrations, that is, less amount of protein is released at pH 7.4 or healthy blood glucose level (1 mg mL?1 glucose), while quicker release of protein occurs at pH 5.5 or diabetic blood glucose level (above 3 mg mL?1 glucose). Circular dichroism spectra show that the secondary structure of released protein is maintained compared to naive protein. Overall, the nanogels have provided a simple and effective strategy to deliver protein.  相似文献   

16.
Flexible multivalent 3D nanosystems that can deform and adapt onto the virus surface via specific ligand–receptor multivalent interactions can efficiently block virus adhesion onto the cell. We here report on the synthesis of a 250 nm sized flexible sialylated nanogel that adapts onto the influenza A virus (IAV) surface via multivalent binding of its sialic acid (SA) residues with hemagglutinin spike proteins on the virus surface. We could demonstrate that the high flexibility of sialylated nanogel improves IAV inhibition by 400 times as compared to a rigid sialylated nanogel in the hemagglutination inhibition assay. The flexible sialylated nanogel efficiently inhibits the influenza A/X31 (H3N2) infection with IC50 values in low picomolar concentrations and also blocks the virus entry into MDCK‐II cells.  相似文献   

17.
Poly(N‐isopropylacrylamide) (PNIPAAm) grafted dextran nanogels with dodecyl and thiol end groups have been synthesized by RAFT process. Dodecyl‐terminated polymers (DexPNI) can be readily dissolved in water and further self assemble into ordered stable nanostructures through direct noncovalent interactions at room temperature. SEM, AFM and DLS measurements confirm the formation of spherical nanogels at hundred‐nanometer scales. The elevation of environment temperature will indirectly result in the formation of collapsed nanostructures due to the LCST phase transition of PNIPAAm side chains. Turbidimetry results show that the phase transition behaviors of DexPNI are greatly dependent on PNIPAAm chain length and polymer concentration: increasing PNIPAAm chain length and polymer concentration both lead to lower LCSTs and sharper phase transitions. Moreover, the dodecyl‐terminated polymers can transform into thiol‐terminated versions by aminolysis of trithiocarbonate groups, and further into chemical (disulfide) cross‐linked versions (SS‐DexPNI) by oxidation. SS‐DexPNI nanogels have “doubled” chain length of PNIPAAm, and hence sharper phase transitions. In situ DLS measurements of the evolution of hydrodynamic radius attest that the self assembly of SS‐DexPNI nanogels can be selectively directed by the change in either external temperature or redox potential. These nanogels thus are promising candidates for triggered intracellular delivery of encapsulated cargo. We can also expect that the polymer can be noncovalently (by dodecyl end groups) or covalently (by thiol end groups) coated on a series of nanomaterials (e.g., carbon nanotubes, graphene, gold nanomaterials) to build a variety of novel smart, and robust nanomaterials.

  相似文献   


18.
Commercial and synthetic azobenzene derivatives were used for the synthesis of hydrophilic polymeric dyes. Two strategies based respectively on the polymerization of dye methacrylic derivatives with different monomers and on the functionalization of reactive polymers were investigated. Polymers containing rather small amounts of the selected dyes were generally obtained, very likely because of the electron withdrawing effect of azo chromophores. Almost quantitative conversions were recorded in the reaction of commercial dyes with maleic anhydride/methyl vinyl ether alternating copolymers. Some of the prepared polymeric dyes were preliminarily tested as textile finishing agents.  相似文献   

19.
淀粉基聚合物胶束用作药物载体   总被引:1,自引:0,他引:1  
两亲性聚合物能通过亲疏水作用自组装为核-壳结构,而这独特的优势已使其成为在肿瘤靶向药物缓释方面具有很好发展前景的药物载体.淀粉原材料来源丰富,价格低廉,同时具有良好的生物相容性和生物可降解性,故基于淀粉的两亲性聚合物胶束正引起越来越多研究者极大的关注.作为药物载体,淀粉基聚合物胶束不仅可以提高药物的水溶性、延长药物在体内的循环时间、降低副作用和通过增强渗透与滞留(EPR)效应提高药物在靶向部位的优先累积,还可以在淀粉骨架上引入一些刺激响应型的官能团实现胶束快速靶向释药的功能.因此,淀粉基聚合物胶束在用作药物载体方面有着广阔的发展潜力.本文结合本课题组目前的研究工作和近几年的相关报道对淀粉基聚合物胶束作为药物载体的最新研究进展做简要综述.  相似文献   

20.
Protein design is a useful method to create novel artificial proteins. A rational approach to design a heterodimeric protein using domain swapping for horse myoglobin (Mb) was developed. As confirmed by X‐ray crystallographic analysis, a heterodimeric Mb with two different active sites was produced efficiently from two surface mutants of Mb, in which the charges of two amino acids involved in the dimer salt bridges were reversed in each mutant individually, with the active site of one mutant modified. This study shows that the method of constructing heterodimeric Mb with domain swapping is useful for designing artificial multiheme proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号