首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the determination of chromium in sea water is described which requires minimal sample preparation. The chromium from filtered samples is oxidized with permanganate, extracted with ammonium pyrrolidine dithiocarbamate into MIBK, and analyzed by atomic absorption spectrometry in a fuel-rich air-acetylene flame. Non-filterable solids are extracted with 12 M hydrochloric acid and analyzed. Detection limits for the methods are 0.05 μg 1-1 in the soluble phase and 0.06 μg 1-1 in the particulate phase.  相似文献   

2.
The simultaneous or sequential determination of chromium(VI) and total chromium in water by flow injection analysis, using different configurations with a double- or single-beam spectrophotometer as detector, is investigated. The method is based on reaction between chromium(VI) and 1,5-diphenylcarbazide. Chromium(III) and (VI) are distinguished by using two carrier streams, one of which contains cerium(IV) to oxidize chromium(III) to chromium(VI). The determination range is 0.2–10.0 μg Cr ml?1; the r.s.d. is 0.8% for 1 μg Cr. The sampling frequency is 40 h?1. A wide study of interferences is reported.  相似文献   

3.
Chromium(VI) (0–5 μg) can be determined spectrophotometrically at 365 nm after flow-injection extraction into chloroform of the ion-associate, tetramethylenebis(triphenylphosphonium) dichromate. The carrier stream is distilled water and the reagent stream contains 1 M sulphuric acid and 0.5% (w/v) tetramethylenebis(triphenylphosphonium) bromide. The sampling rate is 24 h?1. The calibration graph is linear up to 20 μg ml?1 and the detection limit is 0.44 μg ml?1 chromium, based on injection volumes of 250 μl. The system has been applied to the determination of chromium in a range of steels.  相似文献   

4.
Dissolved chromium(III) and (VI) are coprecipitated separately from sea water, and chromium in the precipitates and particulate matter is determined by thin-film x-ray fluorescence spectrometry. In combination with an ultraviolet irradiation procedure whch releases bound metals, the method provides information about the speciation of chromium in near-shore surface sea water. The ratios of labile Cr(III)/(IIO+VI) generally lie in a narrow range (0.4–0.5) as do the sums of labile Cr(III) and (VI) concentrations (0.3–0.6 μg l?1). Bound chromium is variable (0–3 μg l?1) and constitutes from 0 to 90% of total dissolved chromium. Acidification of the samples in the traditional manner for trace metal determination is shown to alter the proportion of Cr(III) to Cr(VI).  相似文献   

5.
A simple procedure is described for reducing the chemical interference of heavy metal ions with the hydride—atomic absorption spectroscopic method for the determination of selenium. This is achieved through the formation of stable chlorocomplexes of these ions in 7.5 M HCl. Up to 30 μg Cu(II) ml-1, 500 μg Ni(II) ml-1, and 500 μg Fe(III) ml-1 do not interfere. Recoveries of selenium from standard reference samples, fortified with known interfering concentrations of heavy metals, range between 92 and 101%. The reducing property of hydrochloric acid is used to differentiate between Se(IV) and Se(VI) species.  相似文献   

6.
The pH-stat method, which is well known in organic chemistry and biochemistry, is used for the kinetic determination of metal ion catalysts. Indicator reactions that involve protons can be followed by controlled addition of standard base or acid. This is illustrated by the following examples: determination of copper(II) (0.03–0.3 μg ml-1) with the indicator reaction ascorbic acid—peroxydisulphate; determination of molybdenum(VI) (0.2–2.5 μg ml-1) with the indicator reaction thiosulphate—hydrogen peroxide; determination of zirconium(IV) (0.2–2 μg ml-1) with the indicator reaction iodide—hydrogen peroxide; and determination of vanadium(V) (0.2–2 μg ml-1) with the indicator reaction iodide—bromate. For one example, the copper—ascorbic acid—peroxydisulphate reaction, it is shown that the pH-stat method has distinct advantages over closed systems, giving considerably better sensitivity for the determination of copper (0.5–5 ng ml-1 ).  相似文献   

7.
《Analytical letters》2012,45(6):1131-1145
ABSTRACT

A simple and sensitive extraction-spectrophotometric method for the determination of barium and potassium is reported. The 18C6-Barium-Orange II (18C6-Ba-(OR II)2) and 18C6-Potassium-Orange II (18C6-K-OR II) ternary complexes are quantitatively extracted into dichloromethane and their absorbances are measured at 483 nm. Linear calibration graphs were obtained over the barium concentration range of 0.1-5 μg ml?1 and potassium concentration range of 1-8 μg ml?1. The relative standard deviation for 2.0 μg ml?1 barium and pottasium are, respectively, 4.16% and 3.60%. The interfering effect of a large number of diverse ions on the determination of barium and potassium was studied. The method was applied to a synthetic sample with natural matrix effects of tap water and the results showed high potential of the recommended method for the determination of Ba and K in water samples.  相似文献   

8.
A method is described for the determination of particulate chromium and dissolved chromium(III) and (VI) in water at μg l-1 levels. Particulate material is collected by filtration of the water sample through a membrane filter (0.4-μm pore-size). Chromium(III) and chromium(VI) are then coprecipitated, separately and in that order, with iron(III) hydroxide (at pH 8.5) and a cobalt—pyrrolidinedithiocarbamate carrier complex (at pH 4.0). Both precipitates are collected as thin films on membrane filters and, with the particulate material, analysed directly for chromium by x-ray fluorescence spectrometry. Detection limits, for a 100-ml water sample and counting times of 100 s, are 0.1 μg Cr l-1. The method is unaffected by sea salt and is applicable, without modifications, to river and estuarine waters.  相似文献   

9.
A selective preconcentration of chromium(VI) is proposed for analysis of natural waters. Chromium(VI) is quantitatively separated from chromium(III) by coprecipitation with barium sulfate; salicylic acid is used as a masking agent for iron(III), aluminum(III) and chromium(III). The precipitate is fused with alkali carbonate, and the chromium(VI) in the melt is isolated with hot water and determined spectrophotometrically with diphenylcarbazide. The detection limit is 0.02 μg l-1 the relative standard deviation for chromium(VI) in river water is less than 5%.  相似文献   

10.
A method based on anodic stripping voltammetry at the mercury-coated graphite electrode has been developed for the direct determination of bismuth and antimony at their natural levels in sea water. Bismuth plated at -0.4 V from sea water made 1 M in hydrochloric acid gives a stripping peak proportional to concentration at -0.2 V without interference from antimony or other metals normally present. Antimony may be plated from sea water made 4 M in hydrochloric acid and gives a stripping peak at -0.2 V proportional to the sum of bismuth and antimony. By use of the standard addition technique, satisfactory results were obtained for sea water samples with concentration ranges of 0.02–0.09 μg kg?1 for bismuth and 0.2–0.5 μg kg?1 for antimony.  相似文献   

11.
《Analytical letters》2012,45(10):1989-1998
Abstract

A sensitive and selective spectrophotometric flow injection analysis (FIA) method with chlorophosphonazo-mN has been developed for the determination of uranium(VI) in standard ore samples. Most of interfering ions are effectively eliminated by the masking reagent of diethylenetriaminepentaacetic acid (DTPA). In the U(VI)-chlorophosphonazo-mN system, the maximum absorption wavelength is at 680 nm and Beer's law is obeyed in the range of 1 to 15 μg ml?1. The correlation coefficient of the calibration curve is 0.9998, the sampling frenquency is 60 h?1, and the detection limit for uranium(VI) is 0.5 μg ml?1. The composition of the U(VI)-chlorophosphonazo-nN complex was established to be 1:2 by flow-through spectrophotometric and conventional molar ratios methods.  相似文献   

12.
The determination of chromium (VI) compounds in plants by electrothermal atomic absorption spectrometry (ET AAS) is proposed based on their leaching with 0.1 M Na2CO3. Due to the presence of relatively high amounts of Na2CO3 in the resulting samples, the temperature and time of pyrolysis and atomization stages must be optimized to minimize the influence of the matrix. A limit of detection (LOD) for determination of Cr(VI) in plants by ET AAS was found to be 0.024 μg g−1.The concentration of Cr(VI) and total chromium in plants collected in different geographical areas (South Africa and Russia), grown on soils high in chromium was determined. The concentration of Cr(VI) and total Cr in stems and leaves of plants was in the range of 0.04–0.7 μg g−1 and 0.5–10 μg g−1, respectively. The limited uptake of Cr(III) by plants, in comparison to its concentration in soil, can be explained by the very low solubility of natural Cr(III) compounds.Results for the determination of Cr(VI) were confirmed by the analysis of BCR CRM 545 (Cr(VI) in welding dust) with good agreement between certified (39.5 ± 1.3 μg mg−1) and found (38.8 ± 1.2 μg mg−1) values. The total concentration of Cr in plants has also been determined by ET AAS after dry ashing of samples at 650 °C. Results were confirmed by the analysis of BCR CRM 281 (Trace elements in Rye Grass) with good agreement between the found (2.12 ± 0.16 μg g−1) and certified value (2.14 ± 0.12 μg g−1).  相似文献   

13.
《Analytical letters》2012,45(1):179-191
Abstract

A kinetic method for the determination of trace amounts of Mo(VI) (0.05-4 μg ml?1) based on its catalytic effect on the reduction of thionine by hydrazine monochloride in strongly acidic media is reported. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of thionine at 605 nm after a fixed time (5 min.). The detection limit of the method is 23 ng ml?1 and the relative standard deviation (RSD) for 0.05 μg ml?1 of Mo(VI) is 1.2% (n=7). The method is almost free from interferences, especially from large amounts of tungsten. The procedure was successfully applied to the determination of trace amounts of molybdenum in steel.  相似文献   

14.
《Analytical letters》2012,45(11):2007-2014
Abstract

A simple and inexpensive method for determining chromium (VI) in drinking water by spectrophotometry after preconcentration with sodium dodecyl sulphate (SDS) coated alumina column is described. Chromium(VI) is reacted with diphenylcarbazide (DPC) and the Cr-DPC complex is quantitatively adsorbed onto a SDS coated alumina column from 800 ml of sample solution. The complex is then eluted with a 8 ml mixture of methanol, acetone and hydrochloric acid and determined by spectrophotometry. Total chromium can be determined after oxidation of chromium (III) to chromium (VI) by KMnO4. The relative standard deviation (10 replicate analyses) at the 10 μg l?1 of chromium (VI) and 10 μg l?1 of total chromium were 3.5% and 3.4% and corresponding limits of detection (based on 3 σ) were 0.040 μg l?1 and 0.033 μg l?1, respectively.  相似文献   

15.
A procedure for determining the concentrations of dissolved chromium species in natural waters is described. Chromium(III) and chromium(VI), separated by co-precipitation with hydrated iron(III) oxide, and total dissolved chromium are determined separately by conversion to chromium(VI), extraction with APDC into MIBK and determination by a.a.s. The detection limit is 40 ng l?1 Cr. The dissolved chromium not amenable to separation and direct extraction is calculated by difference. In the waters investigated, total concentrations were relatively high (1–5 μg l?1) with Cr(VI) the predominant species in all areas sampled with one exception, where organically bound chromium was the major species.  相似文献   

16.
A novel method for the separation and preconcentration of Se(IV)/ Se(VI) with algae and determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The Se(VI) is extracted with algae from the solution containing Se(IV)/Se(VI) at pH 5.0, and the remaining Se(IV) is then preconcentrated pH 1.0. The detection limits (3σ, n = 11) of 0.16 μg L–1 for Se(IV) and 0.14 μg L–1 for Se(VI) are obtained using 40 mL of solution. At the 2.0 μg L–1 level the relative standard deviation is 2.6% for Se(IV) and 2.3% for Se(VI). The method has been applied to the determination of Se(IV)/Se(VI) in sediment and water samples. Analytical recoveries of Se(IV) and Se(VI) added to samples are ¶97 ± 5% and 102 ± 6% (95% confidence), respectively.  相似文献   

17.
Small amounts of phosphate (0.08–1.16 μg ml-1) and larger amounts of silicate (12–60 μg ml-1) can be determined simultaneously by a kinetic method based on the difference in the rates of the heteropoly blue formation with molybdenum (V)—molybdenum (VI) mixtures in 0.28 M perchloric acid. The interference of large amounts of iron(III) on the determination of phosphate can be eliminated by masking with sodium hydrogen sulfite; this method is applicable to reagent-grade iron(III) chloride.  相似文献   

18.
A method is described for the determination of anionic detergents. The detergent anions are extracted into chloroform as an ion-association compound with the bis(ethylenediamine)copper(II) cation. Determinations are completed by colorimetry or atomic absorption spectrometry. With a 150-ml water sample, the limit or detection is 0.03 μg ml-1 (as LAS) for colorimetry or 0.06 μg ml-1 for a.a.s. The method requires only one phase separation step and is highly selective. It is directly applicable to brine and sea-water samples.  相似文献   

19.
A simple, sensitive and reliable method has been developed for separation and preconcentration of chromium (VI) from aqueous samples before determination by electrothermal atomic absorption spectrometry. The method is based on the extraction of the hydrophobic complex of chromium (VI) with ammonium pyrrolidine dithiocarbamate in the coacervates made up of decanoic acid reverse micelles in the water–tetrahydrofuran mixture. Parameters affecting the extraction efficiency of the analyte were studied and optimised. Under the optimum conditions, the linear range, enhancement factor, the limit of detection and limit of quantification were found to be 0.008–0.4 µg L?1, 127, and 1.8 ng L?1 and 6.0 ng L?1, of Cr(VI), respectively. The relative standard deviation at the concentration level of 0.1 µg L?1 Cr(VI) (n = 6) was 4.2%. Total chromium was determined after the oxidation of Cr(III) to Cr(VI) with permanganate in acidic medium. The method was successfully applied to the determination of chromium species in water and human serum samples.  相似文献   

20.
After dissolution of silicon with hydrofluoric and nitric acids and matrix volatilization as hexafluorosilicic acid, 0.2 M nitric acid and 1.8 M ammonium nitrate are added to the residue. Molybdate is then determined by means of its catalytic wave in nitrate media. The limit of determination is ca. 0.1 μg g-1 and calibration graphs are linear up to 0.2 μg Mo(VI) ml-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号