首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fatigue corrosion phenomenon is a form of degradation that is because of the combined occurrence of a mechanical cyclical stress and a corrosive environment. Fatigue corrosion can be an issue in commercial and military aircraft, and has the potential to affect the structural integrity and the useful life of an aerostructure. Although the distinct consequences of both fatigue and corrosion have been extensively documented for aluminum alloys, their synergistic action is not completely understood and continues to be an area of considerable scientific and industrial interest. In this paper, a novel approach is proposed and applied for monitoring the electrochemical behavior of different types of aluminum alloy samples while they are subjected to fatigue loading. Cyclic load experiments were conducted on bare 2024T3 and 6056T4 aluminum alloy samples in the presence of an aggressive aerated solution of 3.5% NaCl over a range of frequencies. The R‐ratio was 0. Two different aluminum alloys have been tested in both high‐ and low‐cycle fatigue. In the former case, the maximum stress experienced by the specimen is lower than the material yield strength, which means that the average expected number of cycles to failure is high; in the latter case, the maximum stress experienced by the specimen during the test is higher than the material yield strength, which means that the average expected number of cycles to failure is low. The open circuit potential(OCP) was monitored versus time during the tests described above. The observed OCP variations are interpreted as the occurrence of corrosion during crack initiation and propagation at the air formed oxide/solution interface film. As expected, there is a more pronounced influence of corrosion at lower fatigue frequencies. Crack propagation allows bulk material to be progressively more exposed to the aggressive environment, which stimulates accelerated crack propagation, resulting in a lower fatigue resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Chemical dealloying of Pt binary alloy precursors has emerged as a novel and important preparation process for highly active fuel cell catalysts. Dealloying is a selective (electro)chemical leaching of a less noble metal M from a M rich Pt alloy precursor material and has been a familiar subject of macroscale corrosion technology for decades. The atomic processes occurring during the dealloying of nanoscale materials, however, are virtually unexplored and hence poorly understood. Here, we have investigated how the morphology and intraparticle composition depend on the particle size of dealloyed Pt-Co and Pt-Cu alloy nanoparticle precursor catalysts. To examine the size-morphology-composition relation, we used a combination of high-resolutionscanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), electron energy loss (EEL) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), and surface-sensitive cycling voltammetry. Our results indicate the existence of three distinctly different size-dependent morphology regimes in dealloyed Pt-Co and Pt-Cu particle ensembles: (i) The arrangement of Pt shell surrounding a single alloy core ("single core-shell nanoparticles") is exclusively formed by dealloying of particles below a characteristic diameter d(multiple cores) of 10-15 nm. (ii) Above d(multiple cores), nonporous bimetallic core-shell particles dominate and show structures with irregular shaped multiple Co/Cu rich cores ("multiple cores-shell nanoparticles"). (iii) Above the second characteristic diameter d(pores) of about 30 nm, the dealloyed Pt-Co and Pt-Cu particles start to show surface pits and nanoscale pores next to multiple Co/Cu rich cores. This structure prevails up to macroscopic bulklike dealloyed particles with diameter of more than 100 nm. The size-morphology-composition relationships link the nano to the macro scale and provide an insight into the existing material gap of dealloyed nanoparticles and highly porous bulklike bimetallic particles in corrosion science.  相似文献   

3.
Magnesium matrix composites reinforced by calcium phosphate could not show the desired effect on the magnesium breakdown rate. Rapid disintegration rate limited the magnesium alloys used as biodegradable implant material. The rate of degradation can be minimized and biological activity can be improved in the magnesium alloy by Hydroxyapatite (HA) coating with the improvement of bone induction and conduction abilities. Various alkali post-treatment and conversion coating methods are applied to deposit HA coatings and biocompatible dicalcium phosphate dihydrate (DCPD) on magnesium alloy so that corrosion resistance and surface biocompatibility can be improved to be used in bone tissue engineering applications. Magnesium's corrosion resistance will weaken its antibacterial properties, which are linked to and proportional to the alkaline pH at the time of breakdown. The goal of this study is to bring together and compare contemporary research on different coatings on magnesium and related alloys in relation to antibacterial functionalized activities. A though review has been performed on in vivo and in vitro cytocompatibility, material property, corrosion resistance, and antibacterial properties of the coatings. Increased degradation behavior, biocompatibility, and bioactivity have been achieved following multiple procedures such as alkali treatment with HA electrochemical deposition on magnesium alloy. Multifunctional coatings can make safe and bioactive magnesium alloy surfaces for biodegradable implant applications.  相似文献   

4.
Raney Ni催化剂是石油化学工业用量最大的催化剂之一,通过急冷技术将其晶态结构转变为非晶态结构,能够提高加氢活性.但非晶态合金热稳定性差、比表面积小限制了这类催化材料的工业应用.通过加入少量稀土元素,使非晶态 Ni 晶化温度提高200 K以上; 通过加入Al再碱抽Al,使非晶态Ni比表面积增加100倍以上; 通过加入功能助剂调节非晶态Ni的加氢选择性、增加抗酸碱腐蚀性和磁性,从而形成了系列非晶态Ni加氢催化剂 (商品名为 SRNA).其中,SRNA-1 用于药物中间体加氢; SRNA-2用于葡萄糖加氢制山梨醇; SRNA-3用于汽、柴油吸附脱硫; SRNA-4用于己内酰胺加氢精制; SRNA-5 用于苯甲酸加氢中替代Pd/C催化剂,使后者的用量减少了50%.  相似文献   

5.
Summary The processing of synthetic material by injection molding machines and extruders produce wear on metal surfaces being in contact with the synthetic material. The corrosion in the melting areas of such machines depends on the chemical and morphological properties of the steel surface. The processing generates chemical changes which can be monitored by means of surface analysis methods. We examined different steels — containing Cr, Mo and V — which were corroded by various melts of synthetic materials. AES, ESCA and SIMS measurements show that some components especially chromium, play a key role for the corrosion process. Corrosion at the surface causes changes of the chemical composition along varying depths (100 – 300 Å). The knowledge of the correlation between chemical changes and surface properties will be helpful for choosing adequate alloys for synthetic material processing machines.  相似文献   

6.
0引言制作高功率的卷绕式铅酸蓄电池,目前日益受到广泛关注。薄型极板是卷绕式铅酸蓄电池的显著特点之一。很薄的极板决定着卷绕式铅酸电池的优良性能。制造薄极板的前提是要先制得薄板栅。卷绕式铅酸蓄电池的板栅一方面要起到传统板栅支撑活物质与作为导电电极的作用,另一方面要求这种合金制成板栅后可以卷绕,所以硬度与脆性不能太大。此板栅一般要加工成厚度为0.2 ̄0.5mm的铅箔。而有报道制得更薄的板栅,厚度达到0.05 ̄0.08mm,可以说做到了薄如纸[1]。制作这样薄的板栅一般采用压延的方式,首先的问题就是选择何种合金材料,然后是其电化学…  相似文献   

7.
As an optimum shell material, AZ80 magnesium alloys are widely applied in the 3C (computers, communications and consumer electronics) industries. The case of 3C products corroded by a sweaty hand has been simulated and the corrosion characters have been investigated by ellipsometric technology. Thickness variation of corrosive medium film on a Mg alloy surface was monitored. Surface structure of a corrosion layer was described with a three‐layer optical model (substrate—EMA—Cauchy) and thickness of each layer for different soaking time was obtained by fitting experimental data with the model. The corrosion product films with a refractive index of 1.45–1.62, loose corrosion product layer, can only provide limited protection to the substrate when a Mg alloy surface is corroded by sweat again. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
曾潮流  张鉴清 《应用化学》1993,10(5):110-112
近年来,Ni-Al基金属间化合物的研究特别活跃,是一类潜在高温结构材料。作者曾研究了铁基合金熔盐腐蚀的阻抗特征,提出了阻抗模型及图谱解析方法。本文研究Ni-Al系金属间化合物熔盐热腐蚀的阻抗特征。 材料为Ni_3Al和NiAl(Fe)金属间化合物。X-衍射分析证明是此结构。Ni_3Al成分为(at%):Al 21.2,B 0.1,Zr 0.3,Ni余量;NiAl(Fe)成分为(at%):Al 19.68,Fe 15.03,Mo 2.0,Hf 0.27,  相似文献   

9.
Magnesium alloys are promising biomaterials as biodegradable implant for orthopedic applications. However, their low corrosion resistance and poor bioactivity have prohibited their implant applications. In order to enhance these two properties, a nano‐grain merwinite coating was prepared on magnesium alloy. Its corrosion and the bioactivity behavior were characterized with electrochemical and immersion tests. The results showed that the nano‐grain merwinite coating can improve both the corrosion resistance and the bioactivity of the magnesium alloy making it an appropriate material for biodegradable bone implants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The multi-component nanocatalysts based on platinum-transient metals alloys applied onto dispersed carbon material are considered as the most promising catalysts, which can be substituted for platinum in the fuel cell cathodes. The electrocatalytic activity of platinum in the PtM1/C and PtM1M2/C alloys increases by several times with simultaneous increase in the stability. From the results obtained by structural and electrochemical methods, it is found that the synthesized binary and ternary catalysts are the metal alloys, whose surface is enriched in platinum as a result of surface segregation and subsequent chemical or electrochemical treatment. Under the corrosive attack, the less-noble metal, which has not entered into the alloy, dissolves, and the core-shell structures form. The properties of platinum in the shell differ from its properties in Pt/C due to the ligand effect of the core (metal alloy). As a result, the surface coverage with oxygen chemisorbed from water decreases in the binary and ternary systems. This causes an increase of the catalytic activity in the O2 reduction reaction due to a decline in the effect of surface blocking against molecular oxygen adsorption and a decrease in the platinum dissolution rate, because the oxidation of platinum by water is the onset of corrosion process. For the catalytic systems studied, the mass activity decreases in the following order: 20% Pt in PtCoCr/C > 7.3% Pt in PtCo/C ≥ 7.3% Pt in PtCr/C and PtNi/C ≥ 40% Pt/C. The application of PtCoCr/C catalyst as the cathode in a low-temperature hydrogen-air fuel cell enabled one to reduce the platinum consumption by one half on retention of its performance.  相似文献   

11.
锆基合金由于具有低的热中子吸收截面、良好的耐腐蚀性能和力学性能等优点,通常被用于水冷核反应堆中的核燃料包壳和其他结构材料。通过在合金中添加适量的Nb元素可以有效地降低锆合金的氧化速率和吸氢分数,从而改善锆合金的耐腐蚀性能。尽管对锆合金的耐腐蚀性能得到了广泛的认识,但关于其在接近真实氧化腐蚀条件下的原位研究一直是具有挑战性的课题。本工作中利用近常压X射线光电子能谱(NAP-XPS)原位研究了1.3 × 10-8 - 1.3 × 10-1 mbar (1 mbar = 100 Pa)连续分压下室温到623 K温度时两种锆基合金表面在水,氧中的初始氧化腐蚀行为。结果表明,未添加Nb和添加1%Nb的锆合金表面在初始氧化过程中锆元素都会由金属态向多种氧化态过渡。水蒸气环境下两种合金的氧化速率都要低于氧气环境。室温下无论水蒸气还是氧气环境两种合金的氧化速率都要比623 K高温情况下的慢。在623 K的氧气气氛下,未添加Nb的锆合金相较于添加1%Nb的锆合金更容易被氧化,Nb的添加一定程度上会降低氧物种的吸附能力。在室温下和623 K低水蒸气压力下,1%Nb锆合金氧化速率更快,Nb促进OH-在表面生成。而在623 K高水蒸气压力下,未添加Nb的锆合金有更易于被氧化的倾向,Nb在高温下向表面扩散并抑制OH-键的断裂,但两种样品表面短时间内都无法被完全氧化。  相似文献   

12.
Electrodeposited zinc–nickel alloy coatings have been widely adopted for surface treatment of automobile body steel sheet for high corrosion resistance. The corrosion behavior of the coatings has been related with the components of nickel, and the zinc–nickel alloy passive coatings have much higher corrosion resistance than that of zinc–nickel alloy coatings. In the present paper, the corrosion resistance behavior of the zinc–nickel alloy coatings obtained by new process and formulation has been studied by means of the electrochemistry test and neutral salt spray test. And it is discovered that the properties of corrosion resistance of zinc–nickel alloy passive coatings were better than that of zinc passive coatings, Cadmium passive coatings and alloys of electrodeposited cadmium–titanium. The components of corrosion productions, in terms of X‐ray diffraction (XRD), are mainly ZnO, ZnCl2 · 4Zn(OH)2 and small quantity of 2ZnCO3· 3Zn(OH)2. The component of zinc–nickel alloy coatings has been investigated with Glow Discharge Optical Emission Spectrometry (GDA‐750). And it is found that as the thickness of zinc–nickel alloy coatings increases, the component of zinc increases from beginning to end, but the peak value of nickel appears and an enrichment of nickel in the coatings comes into being. Because the electrodeposited zinc–nickel alloy coatings exhibit different alloy phases as a function of their alloy composition, in this paper, the crystal structure changing with the different component of nickel has been studied in terms of XRD. The result shows that electrodeposited zinc–nickel alloy has different phases: α‐phase, a solid solution of zinc in nickel with an equilibrium solubility of about more than 79% nickel; γ‐phase, an intermediate phase with a composition Ni5Zn21; η‐phase, a solid solution of nickel in zinc with less than 5% nickel; and δ‐phase (Ni3Zn22) appeared from η‐phase to α‐phase with increasing content of nickel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Corrosion tests of high temperature alloys, Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H were performed in molten fluoride salt, FLiNaK (LiF-NaF-KF:46.5-11.5-42 mol%) with the goal of understanding the corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850 °C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly by dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries of these alloys. Weight-loss due to corrosion generally correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. Two Cr-free alloys, Ni-201 and Nb-1Zr, were also tested. Ni-201, a nearly pure Ni alloy with minor alloying additions, exhibited good resistance to corrosion, whereas Nb-1Zr alloy exhibited extensive corrosion attack. The graphite crucible may have accelerated the corrosion process by promoting the formation of carbide phases on the walls of the test crucibles, but did not alter the basic corrosion mechanism.  相似文献   

14.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

15.
The practical importance of alloy surfaces in catalysis, corrosion andother aspects of materials performance is widely recognized. What is needed now is sufficient knowledge of the relationship between externally controllable factors — alloy composition, temperature, environment — and surface properties — composition, structure, chemical activity — to control materials performance in these applications. Our purpose here is to review progress in determining and predicting the relationship between one surface property, composition, and certain externally controllable variables: overall composition, temperature, environment and physical form.We find that theoretical treatments of metal alloy surface composition now include essentially all significant physical effects and can predict values for most parameters of interest. Though improvements are still possible, the accuracy of predictions is more often limited by uncertainties or absence of the basic data for the calculations (e.g., thermochemical values) than by the models themselves.Alloy surface composition can now be measured well. The first monolayercomposition of large alloy slabs can be determined quantitatively over a wide temperature range in ultra-high vacuum. Difficulties with specimens of practical interest still challenge experimentalists. Among these are supported catalysts, surfaces under chemisorbed layers and composition of layers below the first. Significant progress is being made and we expect the next few years will see success.  相似文献   

16.
Skeletal Ni catalysts were prepared from Ni–Zr alloys, which possess different chemical composition and atomic arrangements, by a combination of thermal treatment and treatment with aqueous HF. Hydrogen generation from ammonia borane over the skeletal Ni catalysts proceeded efficiently, whereas the amorphous Ni–Zr alloy was inactive. Skeletal Ni prepared from amorphous Ni30Zr70 alloy had a higher catalytic activity than that prepared from amorphous Ni40Zr60 and Ni50Zr50 alloys. The atomic arrangement of the Ni–Zr alloy also strongly affected the surface structure and catalytic activities. Thermal treatment of the amorphous Ni–Zr alloys at a temperature slightly lower than the crystallization temperature led to an increase of the number of surface‐exposed Ni atoms and an enhancement of the catalytic activities for hydrogen generation from ammonia borane. The skeletal Ni catalysts also showed excellent durability and recyclability.  相似文献   

17.
In the field of biodegradable material, a new research area has emerged for magnesium (Mg) and its alloys because of its high biocompatibility and biomechanical compatibility. This review summarizes many important types of research that have been done on degradable coatings on magnesium and its alloys for various implant applications. When magnesium alloys come into contact with other metals, they have a low open circuit potential and are consequently prone to galvanic corrosion. When exposed to air or a humid environment, magnesium may rapidly oxidize and generate a thin layer of loose MgO. Its applications were limited due to these drawbacks. Different types of corrosion have been studied in relation to magnesium and its alloys. Several coating methods are described, split into conversion and deposition coatings based on the individual processing procedures employed. This paper covers the most recent advancements in the development of biodegradable Mg alloy coatings over the last decade, revealing that the corrosion resistance of Mg and its alloys increases in most of circumstances due to coatings. Corrosion rate, coating morphology, adhesion, and surface chemistry were identified and explored as significant elements affecting coating performance. Calcium phosphate coatings made by deposition or conversion processes established for orthopedic purposes are the focus of many investigations according to a review of the literature. More research is needed on organic-based biodegradable coatings to improve corrosion resistance. Improved mechanical qualities are also crucial for coating materials. Developing adequate methodologies for studying the corrosion process in depth and over time is still a hot topic of research.  相似文献   

18.
孙冬柏 《电化学》1999,5(2):140-144
研究了不同Cr含量的Fe-Cr合金在H2SO4溶液体系中的摩擦腐蚀过程,重点了载荷,摩擦速度,Cr含量及H2SO4溶液浓度对摩擦电流密度的影响。结果表明:当摩擦仅作用在金属部分表面时,在钝化电位区,外加载荷和摩擦速度对摩擦电流密度有较大的影响。  相似文献   

19.
铜-锑双金属合金高效电催化还原二氧化碳制乙烯   总被引:1,自引:0,他引:1  
随着全球工业化进程的快速发展,日益增多的人类活动不仅加速化石燃料的消耗,还会导致温室气体二氧化碳(CO2)的大量排放.同时,CO2也是廉价、无毒无害、储量丰富的C1资源,将其转化为有价值的化学品具有碳资源合理利用和环境保护的双重意义.近年来,采用电化学方法温和条件下还原CO2为重要化学品和燃料引起广泛关注.其中,探索廉价电催化剂,高效催化还原CO2为C2产物仍是一个具有挑战性的课题.铜基催化剂由于自身低成本和可还原CO2为多种碳氢产物的优点而备受关注.然而,铜基电催化材料具有选择性差、失活严重和效率低等缺点,并且在电催化还原CO2过程中需要较高的过电位,反应过程中会受到氢气析出副反应的影响.为了得到一种化学性质稳定、高电流密度和高选择性等优点的材料在电催化CO2还原中得到了广泛的研究.然而,单纯的铜催化剂对CO2分子的活化以及反应中间体的吸附能力较低,导致了铜基材料催化剂电催化CO2还原活性及选择性较低.因此,开发出可实际应用的高效率和高选择性的电极材料是当前该技术研究中亟待解决的关键科学问题.近年来,铜基二元合金在电催化CO2还原反应中受到广泛关注.由于二元金属的电子结构和各元素的电子结合能发生变化,其催化活性明显优于单金属催化剂.因此,铜基双金属合金在提高CO2还原产物选择性方面具有广阔的前景.本文采用低温还原的方法制备了一系列不同组成的Cu-Sb双金属合金,系统研究了一系列不同配比的Cu-Sb双金属合金对电催化还原CO2为乙烯的影响.研究发现,当Cu/Sb比例为10/1(Cu10-Sb1)时,可有效提高乙烯的法拉第效率及电流密度.当以0.1 M KCl水溶液作为电解液,电位为-1.19 V vs.RHE时,乙烯的法拉第效率和电流密度分别为49.73%和28.5 mA cm-2.实验结果表明,Cu-Sb双金属合金催化剂优异的催化性能主要源于适宜的电子态、良好的CO2吸附性能、较大的电化学比表面积和较高的电子传输速率.迄今,用Cu-Sb作为催化剂进行电催化还原CO2制乙烯尚未见报道.  相似文献   

20.
Hypoeutectic aluminum–silicon alloys can have significant improvements in mechanical properties by inducing structural modification in the normally occurring eutectic. The eutectic modification may affect not only the mechanical properties but also the corrosion resistance of such alloys. It is well known that structural parameters such as grain size and interdendritic spacing can significantly affect corrosion resistance of alloys. However, to date, few researches have been performed to experimentally evaluate the effects of an effective modification of eutectic morphology on surface corrosion behavior of Al–Si alloys. In the present study, modified and unmodified samples of an Al 9 wt.% Si alloy were solidified under similar solidification conditions, and after metallographic procedures, the corrosion resistance was analyzed by both the electrochemical impedance spectroscopy technique and the Tafel extrapolation method carried out in a 0.5 M NaCl test solution at 25 °C. The impedance parameters and corrosion rate were obtained from an equivalent circuit analysis. It was found that the Al-9 wt.% Si alloy casting in the modified condition tends to have its corrosion resistance decreased when compared to the unmodified alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号