首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Isotopic substitution is known to affect kinetic rate constants and equilibrium constants in chemistry. In this study, we have used tritium substitution and high pH to probe the glucose left harpoon over right harpoon glucose(-) + H(+) equilibrium. Passing partially ionized mixtures of [(3)H]- and [(14)C]glucose over anionic exchange resin has permitted the detection of subtle differences in pK(a). We have found that, at pH 11.7 in an anionic exchange system, [(3)H]glucose always elutes ahead of the [(14)C]glucose, and we report isotope effects of 1.051 +/- 0.0007, 1.012 +/- 1.0005, 1.014 +/- 0.0004, 1.024 +/- 0.0003, 1.014 +/- 0.0004, and 1.015 +/- 0.0014 for [1-(3)H]-, [2-(3)H]-, [3-(3)H]-, [4-(3)H]-, [5-(3)H]-, and [6,6-(3)H(2)]glucose, respectively, as compared to either [2-(14)C]-or [6-(14)C]glucose. The elevated isotope effects at H1 and H4 imply unusual charge sharing in anionic aqueous glucose. Base titration of (13)C-chemical shift changes demonstrates the dominance of pyranose forms at elevated pH, and ab initio isotope effect computations on gas-phase glucose anions are presented.  相似文献   

3.
We have generated 3 ns molecular dynamic (MD) simulations, in aqueous solution, of the bacterial soluble glucose dehydrogenase enzyme.PQQ.glucose complex and intermediates formed in PQQ reduction. In the MD structure of enzyme.PQQ.glucose complex the imidazole of His144 is hydrogen bonded to the hydroxyl hydrogen of H[bond]OC1(H) of glucose. The tightly hydrogen-bonded triad Asp163-His144-glucose (2.70 and 2.91 A) is involved in proton abstraction from glucose concerted with the hydride transfer from the C1[bond]H of glucose to the >C5[double bond]O quinone carbon of PQQ. The reaction is assisted by Arg228 hydrogen bonding to the carbonyl oxygen of >C5[double bond]O. The rearrangement of [bond](H)C5(O-)[bond]C4([double bond]O)[bond] of II to [bond]C5(OH)[double bond]C4(OH)[bond] of PQQH(2) hydroquinone is assisted by general acid protonatation of the >C4[double bond]O oxygen by protonated His144 and hydrogen bonds of Arg228 to the oxyanion O5. The continuous hydrogen bonding of the amide side chain of Asn229 to >C4[double bond]O4 oxygen and that of the O5 oxygen of the cofactor to Wat89 is observed throughout the entire reaction.  相似文献   

4.
A series of 5-(4-alkoxyphenylalkyl)-1H-tetrazole derivatives, containing an oxazole-based group at the alkoxy moiety, was prepared and their antidiabetic effects were evaluated in two genetically obese and diabetic animal models, KKAy mice and Wistar fatty rats. Syntheses were performed by cyclization of the corresponding nitrites reacting with azide compounds. A large number of the 5-(4-alkoxyphenylalkyl)-1H-tetrazoles showed potent glucose and lipid lowering activities in KKAy mice. In particular, 5-[3-[6-(5-methyl-2-phenyl-4-oxazolyl-methoxy)-3-pyridyl]propyl]-1H-tetrazole had potent glucose lowering activity (ED25=0.0839 mg x kg(-1) x d(-1)), being 72 times more active than pioglitazone hydrochloride (ED25=6.0 mg x kg(-1) x d(-1)). This compound also showed strong glucose lowering (ED25=0.0873 mg x kg(-1) x d(-1)) and lipid lowering effects (ED25=0.0277 mg x kg(-1) x d(-1)) in Wistar fatty rats. The antidiabetic effects of this compound are considered to be due to its potent agonistic activity for peroxisome proliferator-activated receptor gamma (PPARgamma) (EC50 = 6.75 nM).  相似文献   

5.
Anomeric equilibrium isotope effects for dissolved sugars are required preludes to understanding isotope effects for these molecules bound to enzymes. This paper presents a full molecule study of the alpha- and beta-anomeric forms of D-glucopyranose in water using deuterium conformational equilibrium isotope effects (CEIE). Using 1D (13)C NMR, we have found deuterium isotope effects of 1.043 +/- 0.004, 1.027 +/- 0.005, 1.027 +/- 0.004, 1.001 +/- 0.003, 1.036 +/- 0.004, and 0.998 +/- 0.004 on the equilibrium constant, (H/D)K(beta/alpha), in [1-(2)H]-, [2-(2)H]-, [3-(2)H]-, [4-(2)H]-, [5-(2)H]-, and [6,6'-(2)H(2)]-labeled sugars, respectively. A computational study of the anomeric equilibrium in glucose using semiempirical and ab initio methods yields values that correlate well with experiment. Natural bond orbital (NBO) analysis of glucose and dihedral rotational equilibrium isotope effects in 2-propanol strongly imply a hyperconjugative mechanism for the isotope effects at H1 and H2. We conclude that the isotope effect at H1 is due to n(p) --> sigma* hyperconjugative transfer from O5 to the axial C1--H1 bond in beta-glucose, while this transfer makes no contribution to the isotope effect at H5. The isotope effect at H2 is due to rotational restriction of OH2 at 160 degrees in the alpha form and 60 degrees in the beta-sugar, with concomitant differences in n --> sigma* hyperconjugative transfer from O2 to CH2. The isotope effects on H3 and H5 result primarily from syn-diaxial steric repulsion between these and the axial anomeric hydroxyl oxygen in alpha-glucose. Therefore, intramolecular effects play an important role in isotopic perturbation of the anomeric equilibrium. The possible role of intermolecular effects is discussed in the context of recent molecular dynamics studies on aqueous glucose.  相似文献   

6.
We have utilized tritium isotope effects to probe the in vitro binding equilibrium between glucose and human brain hexokinase (E.C.2.7.1.1). Replacing a backbone hydrogen atom in glucose with tritium can significantly increase or decrease the equilibrium association constant. Specifically, the equilibrium tritium isotope effects are 1.027 +/- 0.002, 0.927 +/- 0.0003, 1.027 +/- 0.004, 1.051 +/- 0.001, 0.988 +/- 0.001, and 1.065 +/- 0.003 for [1-t]-, [2-t]-, [3-t]-, [4-t]-, [5-t]-, and [6,6-t(2)]glucose, respectively. We have shown that the existence of prebinding equilibrium isotope effects can contribute to binding isotope effect studies but that this effect is insignificant for glucose binding to hexokinase. The binding isotope effects are interpreted in the context of structural studies of hexokinase-glucose complexes. Ab initio calculations on 2-propanol with or without a hydrogen bonding partner, in steric collision with formaldehyde or methane, and on ethanol, cyclohexanol and 1-hydroxymethyl-tetrahydropyran are presented to clarify the magnitude of isotope effects possible in such interactions and the accompanying changes in free energy. Position-specific binding isotope effects provide direct evidence of the partial deprotonation and activation of O6 by Asp657, of other hydrogen bonding interactions with ionic residues, and of the steric compression of CH2 by the backbone carbonyl of Ser603.  相似文献   

7.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with furfural, 3-methyl-2-thiophene-carbaldehyde, 2-pyrrolecarbaldehyde, 4-pyridinecarbaldehyde and pyridoxal hydrochloride gave 6-chloro-2-[2-(2-furylmethylene)-1-methylhydrazino]quinoxaline 4-oxide 5a , 6-chloro-2-[1-methyl-2-(3-methyl-2-thienyl-methylene)hydrazino]quinoxaline 4-oxide 5b , 6-chloro-2-[1-methyl-2-(2-pyrrolylmethylene)hydrazino]quinoxa-line 4-oxide 5c , 6-chloro-2-[1-methyl-2-(4-pyridylmethylene)hydrazino]quinoxaline 4-oxide 5d and 6-chloro-2-[2-(3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridylmethylene)-1-methylhydrazino]quinoxalme 4-oxide 5e , respectively. The reaction of compound 5a or 5b with 2-chloroacrylonitrile afforded 8-chloro-3-(2-furyl)-4-hydroxy-1-methyl-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6a or 8-chloro-4-hydroxy-1-methyl-3-(3-methyl-2-thienyl)-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6b , respectively, while the reaction of compound 5e with 2-chloroacrylonitrile furnished 11-chloro-7,13-dihydro-4-hydroxy-methyl-5,14-methano-1,7-dimethyl-16-oxopyrido[3′,4′:9,8][1,5,6]oxadiazonino[3,4-b]quinoxaline 7.  相似文献   

8.
4-Benzoyl-5-phenylfuran-2,3-dione reacts with 2′,5′,5′-trimethyl-4′,5′-dihydro-4H-spiro[naphthalene-1,3′-pyrrol]-4-one and 8-(2-methoxy-5-methylphenyl)-1,3,3,9-tetramethyl-2-azaspiro[4.5]deca-1,7-dien-6-one with the formation of (Z)-3-benzoyl-5-(5′,5′-dimethyl-4-oxo-4H-spiro[naphthalene-1,3′-pyrrolidin]-2′-ylidene)-4-phenylcyclopent-3-ene-1,2-dione, whose structure was proved by XRD analysis, and of (Z)-3-benzoyl-5-{8-(2-methoxy-5-methylphenyl)-3,3,9-trimethyl-6-oxo-2-azaspiro[4.5]dec-7-en-1-ylidene}-4-phenylcyclopent-3-ene-1,2-dione.  相似文献   

9.
The caesium salts of the novel molecular anions [P5Se12]5- and [P6Se12]4- are phase change materials and exhibit near infrared, non-linear optical second harmonic generation; [P5Se12]5- is a coordination complex with an octahedral P3+ center chelated by two [P2Se6]4- ligands whereas [P6Se12]4- features a [P2]4+ dimer chelated by two [P2Se6]4- ligands.  相似文献   

10.
We report herein the synthesis of substituted 2-[4-(1,2-dimethyl-5-nitro-1H-imidazol-4-yl)phenyl]-1-arylethanols, ethyl 3-[4-(1,2-dimethyl-5-nitro-1H-imidazol-4-yl)-phenyl]-2-hydroxypropanoate and 2-[4-(1,2-dimethyl-5-nitro-1H-imidazol-4-yl)benzyl]-2-hydroxy-acenaphthylen-1(2H)-one from the reactions of 4-[4-(chloromethyl)phenyl]-1,2-dimethyl-5-nitro-1H-imidazole with various aromatic carbonyl and a-carbonyl ester derivatives using tetrakis(dimethylamino)ethylene (TDAE) methodology.  相似文献   

11.
The bidentate sandwich ligand [Fe(eta 5-C5H(4)-1-C5H4N)2] has been prepared, structurally characterized and employed in the preparation of the novel supramolecular heterobimetallic metalla-macrocycles [Fe(eta 5-C5H(4)-1-C5H4N)2]Ag2(NO3)(2).1.5H2O, [Fe(eta 5-C5H(4)-1-C5H4N)2]Cu2(CH3COO)(4).3H2O and [Fe(eta 5-C5H(4)-1-C5H4N)2]Zn2Cl4.  相似文献   

12.
A series of 2-(2-aminothiazol-4-yl)benzo[b]furan and 3-(2-aminothiazol-4-yl)benzo[b]furan derivatives were prepared, and their leukotriene B(4) inhibitory activity and growth inhibitory activity in cancer cell lines were evaluated. Several compounds showed strong inhibition of calcium mobilization in CHO cells overexpressing human BLT(1) and BLT(2) receptors and growth inhibition to human pancreatic cancer cells MIA PaCa-2. 3-(4-Chlorophenyl)-2-[5-formyl-2-[(dimethylamino)methyleneamino]thiazol-4-yl]-5-methoxybenzo[b]furan 8b showed the most potent and selective inhibition for the human BLT(2) receptor, and its IC(50) value was smaller than that of the selected positive control compound, ZK-158252. 3-(4-Chlorophenyl)-2-[2-[(dimethylamino)methyleneamino]-5-(2-hydroxyethyliminomethyl)thiazol-4-yl]-5-methoxybenzo[b]furan 9a displayed growth inhibitory activity towards MIA PaCa-2.  相似文献   

13.
Reaction of 2-mercapto-4-hydroxy-5H-[1]-benzopyrano-[4,3- d ]-pyrimidin-5-one ( 3 ) with phenyl isothiocyanate and methyl acrylate yielded the corresponding 2-(substituted)thio-4-hydroxy-5H-[1]-benzopyrano-[4,3- d ]-pyrimidin-5-ones ( 4 , 5 ). Hydrolysis and hydrazinolysis of 5 gave acid derivative 6 , and hydrazone 7 . Treatment of hydrazone 7 with ethyl acetoacetate, diethyl malonate, and phenyl isothiocyanate yielded the corresponding 2-(substituted)thio-4-hydroxy-5H-[1]-benzopyrano- [4,3- d ]-pyrimidin-5-ones ( 8 , 9 , and 11 ). Cyclization of 11 with 2 N NaOH led to 12 .  相似文献   

14.
Nitration of 4-methyl-2-[2-(nitro-2-furyl)vinyl]thiazole with a mixture of concentrated nitric and sulfuric acids leads to 4-methyl-5-nitro-2-[2-(3,5-dinitro-2-furyl)vinyl]thiazole. Under the same conditions 2-methyl- and 2-acetamido-4-[1-R-2-(5-nitro-2-furyl)vinyl]thiazoles (R=CH3, Cl) are nitrated in the 3 position of the furan ring, 2-amino-4-[1-chloro-2-(5-nitro-2-furyl)vinyl]thiazole is nitrated in the 5 position of the thiazole ring and 2-acetamido-5-nitro-4-[2-(2-furyl)vinyl]thiazole undergoes profound changes. Under the influence of a mixture of of nitric acid and acetic anhydride the latter compound is converted quantitatively to the 5-nitro derivative (with respect to the furan ring), whereas 4-[2-(5-nitro-2-furyl)vinyl]thiazole derivatives do not undergo reaction.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 314–317, March, 1977.  相似文献   

15.
The reaction of 4-oxo-3,4-dihydroquinazolyl-and benzimidazolylacetonitriles with 2-chloro-2-quinolinecarbaldehydes and 1-aryl-5-chloro-3-methyl-1H-pyrazole-4-carbaldehydes gave the corresponding 3-(2-chloro-3-quinolyl)-2-(4-oxo-3,4-dihydro-2-quinazolyl)-2-propenenitriles and 3-(1-aryl-5-chloro-3-methyl-1H-4-pyrazolyl)-2-hetaryl-2-propenenitriles. Intramolecular cyclization of these compounds gives 15-oxo-15H-benzo[6,7][1,8]naphthyridino[2,1-b]quinazoline-6-carbonitriles, 1-aryl-3-methyl-11-oxo-1,11-dihydropyrazolo[4′,3′:5,6]pyrido[2,1-b]quinazoline-5-carbonitriles, and 1-aryl-3-methyl-1H-benzo[4,5]imidazo[1,2-a]pyrazolo[4,3-e]pyridine-5-carbonitriles.  相似文献   

16.
Microbial transformation of xanthohumol using the culture broth of Cunninghamella echinulata NRRL 3655 afforded (2S)-8-[4"-hydroxy-3"-methyl-(2"-Z)-butenyl]-4',7-dihydroxy-5-methoxyflavanone (5) and (2S)-8-[5"-hydroxy-3"-methyl-(2"-E)-butenyl]-4',7-dihydroxy-5-methoxyflavanone (6). Xanthohumol (1) and flavanone 6 as well as (E)-2"-(2"'-hydroxyisopropyl)-dihydrofurano[2",3":4',3']-2',4-dihydroxy-6'-methoxychalcone (2), (2S)-2"-(2"'-hydroxyisopropyl)-dihydrofurano[2",3":7,8]-4'-hydroxy-5-methoxyflavanone (3) obtained with Pichia membranifaciens showed antimalarial activity against Plasmodium falciparum.  相似文献   

17.
Xu J  Liu H  Li G  He Y  Ding R  Wang X  Feng M  Zhang S  Chen Y  Li S  Zhao M  Li Y  Qi C  Dang Y 《Molecules (Basel, Switzerland)》2012,17(4):3774-3793
We previously reported 18F-labeled pyrazolo[1,5-a]pyrimidine derivatives: 7-(2-[18F]fluoroethylamino)-5-methylpyrazolo[1,5-a]pyrimidine-3-carbonitrile ([18F]1) and N-(2-(3-cyano-5-methylpyrazolo[1,5-a]pyrimidin-7-ylamino)ethyl)-2-[18F]fluoro-4-nitro- benzamide ([18F]2). Preliminary biodistribution experiments of both compounds showed s slow clearance rate from excretory tissues which warranted further investigation for tumor imaging with PET. Here we modified [18F]1 and [18F]2 by introducing polar groups such as ester, hydroxyl and carboxyl and developed three additional 18F-18 labeled pyrazolo[1,5-a] pyrimidine derivatives: (3-Cyano-7-(2-[18F]fluoroethylamino)pyrazolo[1,5-a]-pyrimidin-5- yl)methyl acetate ([18F]3), 7-(2-[18F]fluoroethylamino)-5-(hydroxymethyl)pyrazolo[1,5-a]- pyrimidine-3-carbonitrile ([18F]4) and (S)-6-(3-cyano-5-methylpyrazolo[1,5-a]pyrimidin-7-ylamino)-2-(2-[18F]fluoro-4-nitrobenzamido)hexanoic acid ([18F]5). The radiolabeled probes were synthesized by nucleophilic substitution of the corresponding tosylate and nitro precursors with 18F-fluoride. In Vitro studies showed higher uptake of [18F]3 and [18F]4 than that of [18F]5 by S180 tumor cells. In Vivo biodistribution studies in mice bearing S180 tumors showed that the uptake of both [18F]3 and [18F]4 in tumors displayed an increasing trend while the uptake of [18F]5 in tumor decreased through the course of the 120 min study. This significant difference in tumor uptake was also found between [18F]1 and [18F]2. Thus, we compared the biological behavior of the five tracers and reported the tumor uptake kinetic differences between 2-[18F]fluoroethylamino- and 2-[18F]fluoro-4-nitro- benzamidopyrazolo[1,5-a] pyrimidine derivatives.  相似文献   

18.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

19.
Depending on the substituents in the aryl moiety, the fusion of N-aryl-N-ethoxycarbonyl-β-alanines with thiocarbohydrazide gives di- or monotriazole derivatives, namely, 4-amino-(2-{[2-(4-amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)ethyl]anilino}ethyl)-4,5-dihydro-1H-1,2,4-triazole-5-thiones, 1-[2-(4-amino- 5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)ethyl]-2,3-dihydroquinolin-4(1H)-ones, 4-amino-3-[2-(4-methylanilino))ethyl]-4,5-dihydro-1H-1,2,4-triazole-5-thione and 4-amino-3-[2-(4-ethoxyanilino)-ethyl]-4,5-dihydro-1H-1,2,4-triazole-5-thione. A ditriazolethione derivative was also obtained from the diethyl ester of N-ethoxycarbonyl-N-(4-ethoxyphenyl)- β-alanine.  相似文献   

20.
Six new alkaloids, broussonetines W, X, M1, U1, J3, and J2 (1-6) were isolated from the branches of Broussonetia kazinoki SIEB. (Moraceae) as minor constituents. They were formulated as (2R,3R,4R,5R)-2-hydroxy-methyl-3,4-dihydroxy-5-17-(cyclohexy-2-on-1(6)-enyl)heptyllpyrrolidine (1), (2R,3S,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-17-(cyclohexy-2-on-1(6)-enyl)heptyl]pyrrolidine-4-O-beta-D-glucopyranoside (2), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(9R)-9,13-dihydroxytridecyl]- pyrrolidine (3), (2S,3S,4S)-2-hydroxymethyl-3,4-dihydroxy-5-(10-oxo-13-hydroxytridecyl)-5- pyrroline (4), (2R)-2-[(IS,2S)-1,2-dihydroxy-8-1(2R,3R,4R,5R)-5-(2-hydroxymethyl-3,4-dihydroxy-1-acetylpyrrolidinyl)loctyl]piperidine (5), (2R)-2-[(1S,2S)-1,2-dihydroxy-8-[(2R,3R, 4R,5R)-5-(2-hydroxymethy]-3,4-dihydroxypyrrolidinyl)]octyl]piperidine (6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号