首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convenient and precise method for the separation and determination of coenzyme Q (CoQ)-related compounds (CoQ homologues, plastoquinone-9, ubichromenol-9, etc.) was developed using high-performance liquid chromatography (HPLC). All compounds tested were separated using a reverse-phase column with a suitable mobile phase and detected at a wavelength of 275 nm. CoQ extracts in plasma and erythrocytes were purified by thin-layer chromatography prior to HPLC analysis, but such purification was not necessary when determining CoQ in urine and tissues. Hydroquinone forms of CoQ existing in animal tissues were oxidized to the corresponding quinone forms with potassium hexacyanoferrate(III). This HPLC method was applied satisfactorily to the determination of the contents of CoQ homologues in human and animal samples. CoQ10 was the only homologue detected in human samples, and CoQ8, CoQ9 and CoQ10 were native homologues of CoQ in rat tissues. Ubichromenol-9 and plastoquinone-9 were not detected in these samples.  相似文献   

2.
Structural interactions that enable electron transfer to cytochrome‐P450 (CYP450) from its redox partner CYP450‐reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane‐bound functional complex to reveal interactions between the full‐length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome‐b5 (cyt‐b5), Arg 125 on the C‐helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein–protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.  相似文献   

3.
Plastoquinone and ubiquinone play essential roles in the electron transport chains of chloroplasts and mitochondria by coupling electron transport to the transfer of protons across membranes. The energy of the resulting proton gradient is used to synthesize adenosine triphosphate (ATP), the energy currency of all life. How did quinones first become involved in this process? We have detected several quinone compounds in carbonaceous meteorites that can transport protons in a liposome model system. It is possible that such compounds were available to transport protons in primitive versions of electron transport in early life.  相似文献   

4.
The synthesis of two gadolinium(III) complexes that exhibit an increase in proton relaxivity in the presence of added Ca(2+) or Zn(2+) ions is reported. The complexes increase their hydration state from zero to one following metal-ion binding, confirmed by spectral measurements on the corresponding Eu(III) complexes. At a field of 1.4 T and 310 K, modulation of relaxivity of the order of 30-40% was observed in mouse serum in each case. The dissociation constants for Ca(2+) and Zn(2+) binding were sensitive to the presence of added bicarbonate, and were 450 μM (Ca(2+)) and 200 μM (Zn(2+)) in serum. Such systems may, therefore, be considered for use as magnetic resonance imaging (MRI) contrast agents to track the restoration of changes in metal-ion concentration in the cerebrospinal fluid of the brain, following neural stimulation.  相似文献   

5.
Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.  相似文献   

6.
Human cytochrome P450 CYP17A1 first catalyzes hydroxylation at the C17 position of either pregnenolone (PREG) or progesterone (PROG), and a subsequent C17−C20 bond scission to produce dehydroepiandrosterone (DHEA) or androstenedione (AD). In the T306A mutant, replacement of the Threonine 306 alcohol functionality, essential for efficient proton delivery in the hydroxylase reaction, has only a small effect on the lyase activity. In this work, resonance Raman spectroscopy is employed to provide crucial structural insight, confirming that this mutant, with its disordered proton shuttle, fails to generate essential hydroxylase pathway intermediates, accounting for the loss in hydroxylase efficiency. Significantly, a corresponding spectroscopic study with the susceptible lyase substrate, 17-OH PREG, not only reveals an initially trapped peroxo-iron intermediate experiencing an H-bond interaction of the 17-OH group with the proximal oxygen of the Fe-Op-Ot fragment, facilitating peroxo- attack on the C20 carbon, but also unequivocally shows the presence of the subsequent hemiketal intermediate of the lyase reaction.  相似文献   

7.
Characterization of orphan enzymes, for which the catalytic functions and actual substrates are still not elucidated, is a significant challenge in the postgenomic era. Here, we describe a general strategy for exploring the catalytic potentials of orphan monooxygenases based on direct infusion analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). Eight cytochromes P450 from Bacillus subtilis were recombinantly expressed in Escherichia coli and subjected to a reconstitution system containing appropriate electron transfer components and many potential substrates. The reaction mixtures were directly analyzed using FT-ICR/MS, and substrates of the putative enzymes were readily identified from the mass spectral data. This allowed identification of previously unreported CYP109B1 substrates and the functional assignment of two putative cytochromes P450, CYP107J1 and CYP134A1. The FT-ICR/MS-based approach can be easily applied to large-scale screening with the aid of the extremely high mass resolution and accuracy.  相似文献   

8.
Respiratory complex I is a key enzyme in the electron transport chains of mitochondria and bacteria. It transfers two electrons to quinone and couples this redox reaction to proton pumping to electrically charge the membrane it is embedded in. The charge and pH gradient across the membrane drives the synthesis of ATP. The redox reaction and proton pumping in complex I are separated in space and time, which raises the question of how the two reactions are coupled so efficiently. Here, we focus on the unique ~35 Å long tunnel of complex I, which houses the binding site of quinone reduction. We discuss the redox and protonation reactions that occur in this tunnel and how they influence the dynamics of protein and substrate. On the basis of recent structural data and results from molecular simulations, we review how quinone reduction and dynamics may be coupled to proton pumping in complex I.  相似文献   

9.
Aromatic and heteroaromatic amines (ArNH(2)) represent a class of potential mutagens that after being metabolically activated covalently modify DNA. Activation of ArNH(2) in many cases starts with N-hydroxylation by P450 enzymes, primarily CYP1A2. Poor understanding of structure-mutagenicity relationships of ArNH(2) limits their use in drug discovery programs. Key factors that facilitate activation of ArNH(2) are revealed by exploring their reaction intermediates in CYP1A2 using DFT calculations. On the basis of these calculations and extensive analysis of structure-mutagenicity data, we suggest that mutagenic metabolites are generated by ferric peroxo intermediate, (CYP1A2)Fe(III)-OO(-), in a three-step heterolytic mechanism. First, the distal oxygen of the oxidant abstracts proton from H-bonded ArNH(2). The subsequent proximal protonation of the resulting (CYP1A2)Fe(III)-OOH weakens both the O-O and the O-H bonds of the oxidant. Heterolytic cleavage of the O-O bond leads to N-hydroxylation of ArNH(-) via S(N)2 mechanism, whereas cleavage of the O-H bond results in release of hydroperoxy radical. Thus, our proposed reaction offers a mechanistic explanation for previous observations that metabolism of aromatic amines could cause oxidative stress. The primary drivers for mutagenic potency of ArNH(2) are (i) binding affinity of ArNH(2) in the productive binding mode within the CYP1A2 substrate cavity, (ii) resonance stabilization of the anionic forms of ArNH(2), and (iii) exothermicity of proton-assisted heterolytic cleavage of N-O bonds of hydroxylamines and their bioconjugates. This leads to a strategy for designing mutagenicity free ArNH(2): Structural alterations in ArNH(2), which disrupt geometric compatibility with CYP1A2, hinder proton abstraction, or strongly destabilize the nitrenium ion, in this order of priority, prevent genotoxicity.  相似文献   

10.
Coenzyme Q10 (CoQ10), a highly lipophilic compound present in the inner mitochondrial membrane, is essential for production of cellular energy in the form of ATP. CoQ10 is used as an antioxidant and also in the treatment of various cardiovascular disorders. The relative bioavailabilities of powder filled capsule (I) and oil-based formulation (II) of CoQ10 were compared in beagle dogs in an open, randomized, multiple dose, cross-over design. Poor and slow absorption characteristics were observed for both the formulations. The AUC, Cmax, and Tmax for formulation I and II are comparable (p < 0.05) where the values for formulation I are 22.84 +/- 6.3 micrograms ml-1 h, 0.51 +/- 0.11 microgram/ml, and 6.1 +/- 2.0 h whereas the values for formulation II are 24.32 +/- 5.6 micrograms ml-1 h, 0.55 +/- 0.16 microgram/ml, and 6.6 +/- 2.3 h, respectively. Stability of CoQ10 at various temperature and humidity conditions and its photostability were studied. Various antioxidants were evaluated to determine the type and amount of antioxidant(s) required to improve the stability of CoQ10. Large extent of degradation was observed at 45 degrees C and 55 degrees C. The effect of humidity conditions on degradation was insignificant. Among the various antioxidants studied, mixture of ascorbic acid (5%) and EDTA (0.1%) offered better protection than phenolic antioxidants such as butylated hydroxy anisole (BHA), butylated hydroxy toluene (BHT), or propyl gallate (PG). Further, increasing concentrations of phenolic antioxidants (from 0.1 to 0.3%) accelerated the degradation.  相似文献   

11.
Troponin C (TnC), a calcium-binding protein of the thin filament of muscle, plays a regulatory role in skeletal and cardiac muscle contraction. NMR reveals a small conformational change in the cardiac regulatory N-terminal domain of TnC (cNTnC) on binding of Ca2+ such that the total exposed hydrophobic surface area increases very slightly from 3090 +/- 86 A2 for apo-cNTnC to 3108 +/- 71 A2 for Ca(2+)-cNTnC. Here, we show that measurement of solvent accessibility for backbone amide protons by means of solution-phase hydrogen/deuterium (H/D) exchange followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform Ion cyclotron resonance mass spectrometry is sufficiently sensitive to detect such small ligand binding-induced conformational changes of that protein. The extent of deuterium incorporation increases significantly on binding of Ca2+ for each of four proteolytic segments derived from pepsin digestion of the apo- and Ca(2+)-saturated forms of cNTnC. The present results demonstrate that H/D exchange monitored by mass spectrometry can be sufficiently sensitive to detect and identify even very small conformational changes in proteins, and should therefore be especially informative for proteins too large (or too insoluble or otherwise intractable) for NMR analysis.  相似文献   

12.
Respiring mitochondria establish a proton gradient across the mitochondrial inner membrane (MIM) that is used to generate ATP. Protein-independent mitochondrial uncouplers collapse the proton gradient and disrupt ATP production by shuttling protons back across the MIM in a protonophoric cycle. Continued cycling relies on the formation of MIM-permeable anionic species that can return to the intermembrane space after deprotonation in the mitochondrial matrix. Previously described protonophores contain acidic groups that are part of delocalised π-systems that provide large surfaces for charge delocalisation and facilitate anion permeation across the MIM. Here we present a new class of protonophoric uncoupler based on aryl-urea substituted fatty acids in which an acidic group and a π-system are separated by a long alkyl chain. The aryl-urea group in these molecules acts as a synthetic anion receptor that forms intermolecular hydrogen bonds with the fatty acid carboxylate after deprotonation. Dispersal of the negative charge across the aryl-urea system produces lipophilic dimeric complexes that can permeate the MIM and facilitate repeated cycling. Substitution of the aryl-urea group with lipophilic electron withdrawing groups is critical to complex lipophilicity and uncoupling activity. The aryl-urea substituted fatty acids represent the first biological example of mitochondrial uncoupling mediated by the interaction of a fatty acid and an anion receptor moiety, via self-assembly.

A new mitochondrial uncoupler that forms membrane permeable dimers through interactions of remote acidic and anion receptor groups.  相似文献   

13.
Quinones play a key role as primary electron acceptors in natural photosynthesis, and their reduction is known to be facilitated by hydrogen-bond donors or protonation. In this study, the influence of hydrogen-bond donating solvents on the thermodynamics and kinetics of intramolecular electron transfer between Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) and 9,10-anthraquinone redox partners linked together via one up to three p-xylene units was investigated. Addition of relatively small amounts of hexafluoroisopropanol to dichloromethane solutions of these rigid rodlike donor-bridge-acceptor molecules is found to accelerate intramolecular Ru(bpy)(3)(2+)-to-anthraquinone electron transfer substantially because anthraquinone reduction occurs more easily in the presence of the strong hydrogen-bond donor. Similarly, the rates for intramolecular electron transfer are significantly higher in acetonitrile/water mixtures than in dry acetonitrile. In dichloromethane, an increase in the association constant between hexafluoroisopropanol and anthraquinone by more than 1 order of magnitude following quinone reduction points to a significant strengthening of the hydrogen bonds between the hydroxyl group of hexafluoroisopropanol and the anthraquinone carbonyl functions. The photoinduced intramolecular long-range electron transfer process thus appears to be followed by proton motion; hence the overall photoinduced reaction may be considered a variant of stepwise proton-coupled electron transfer (PCET) in which substantial proton density (rather than a full proton) is transferred after the electron transfer has occurred.  相似文献   

14.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry was used to investigate Ca(2+), Mg(2+), and La(3+) binding to bovine bone osteocalcin (OCN). OCN was shown to bind 3 mol Ca(2+) per mol protein. There was also evidence for the presence of four additional metal binding sites. Ca(2+) increased the formation of the OCN dimer. Mg(2+) bound to OCN to the same extent as Ca(2+) but did not induce the dimerization of OCN. La(3+) bound to a lesser extent than either Ca(2+) or Mg(2+) to OCN and, like Mg(2+), did not influence dimerization. Each Gla residue of OCN participates in Ca(2+) binding, whereas Mg(2+) binding may occur preferentially at sites other than Gla residues. This implies that the different natures of Ca(2+)- and Mg(2+)-containing OCN complexes influence the tendency of OCN to form a dimer.  相似文献   

15.
9,10-Phenanthrenequinone (PQ) and 1,10-phenanthroline-5,6-dione (PTQ) form 1:1 and 2:1 complexes with metal ions (M (n+)=Sc (3+), Y (3+), Mg (2+), and Ca (2+)) in acetonitrile (MeCN), respectively. The binding constants of PQ--M (n+) complexes vary depending on either the Lewis acidity or ion radius of metal ions. The one-electron reduced species (PTQ(-)) forms 1:1 complexes with M (n+), and PQ(-) also forms 1:1 complexes with Sc(3+), Mg(2+), and Ca(2+), whereas PQ(-) forms 1:2 complexes with Y(3+) and La(3+), as indicated by electron spin resonance (ESR) measurements. On the other hand, semiquinone radical anions (Q(-) and NQ(-)) derived from p-benzoquinone (Q) and 1,4-naphthoquinone (NQ) form Sc(3+)-bridged pi-dimer radical anion complexes, Q(-)--(Sc(3+))(n)--Q and NQ(-)--(Sc(3+))(n)-NQ (n=2 and 3), respectively. The one-electron reduction potentials of quinones (PQ, PTQ, and Q) are largely positively shifted in the presence of M (n+). The rate constant of electron transfer from CoTPP (TPP(2-)=dianion of tetraphenylporphyrin) to PQ increases with increasing the concentration of Sc(3+) to reach a constant value, when all PQ molecules form the 1:1 complex with Sc(3+). Rates of electron transfer from 10,10'-dimethyl-9,9'-biacridine [(AcrH)(2)] to PTQ are also accelerated significantly by the presence of Sc(3+), Y(3+), and Mg(2+), exhibiting a first-order dependence with respect to concentrations of metal ions. In contrast to the case of o-quinones, unusually high kinetic orders are observed for rates of Sc(3+)-promoted electron transfer from tris(2-phenylpyridine)iridium(III) [Ir(ppy)(3)] to p-quinones (Q): second-order dependence on concentration of Q, and second- and third-order dependence on concentration of Sc(3+) due to formation of highly ordered radical anion complexes, Q()--(Sc(3+))(n)--Q (n=2 and 3).  相似文献   

16.
An automated in-capillary assay requiring very small quantities of reagents was developed for performing in vitro cytochrome P450 (CYP450) drug metabolism studies. The approach is based on the following: (i) hydrodynamic introduction of nanoliter volumes of substrate and enzyme solutions in the sandwich mode, within a capillary; (ii) mixing the reagents by diffusion across the interfaces between the injected solutions; (iii) collection of the capillary content at the end of the in-capillary assay; and (iv) off-line analysis of the incubation mixture by ultrahigh pressure liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). After optimizing the injection sequence of the reagents, the in-capillary approach was applied to the quantitative determination of the kinetics of drug metabolism reactions catalyzed by three CYP450 isozymes involved in human drug metabolism: CYP1A2, CYP2D6, and CYP3A4. It was demonstrated that this in-capillary method was able to provide similar kinetic parameters for CYP450 activity (e.g., Michaelis constants and turnover values) as the classical in vitro method, with a drastic reduction of reagent consumption.  相似文献   

17.
王欢欢  吕雅瑶  彭博  钱小红  张养军 《色谱》2015,33(6):553-557
肝微粒体中的药物代谢酶是参与药物代谢的主要酶类,不管是合成药物,还是组成复杂的中药,主要经过肝脏中药物代谢酶的代谢转化成易于排泄的化合物。由于药物代谢酶的表达水平具有较大的个体差异性,因此,药物代谢酶的准确定量对药物的药理、药物相互作用和临床应用具有重要意义。本文综述了近十年来药物代谢酶定量方法的研究进展。  相似文献   

18.
The sorption behavior of Ba(2+) and Co(2+) ions on a natural clay sample rich in kaolinite was studied using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling at 10-A steps was performed up to a 70-A matrix depth of the clay prior to and following sorption. The results showed that Co(2+) is sorbed in slightly larger quantities than Ba(2+), with significant numbers of ions fixed on the outermost surface of the clay. Depletion of the ions K(+), Mg(2+), and Ca(2+) from the clay lattice was observed to accompany enrichment with Co(2+) and Ba(2+) ions. The data obtained using X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) indicated insignificant structural and morphological changes in the lattice of the clay upon sorption of both Ba(2+) and Co(2+) ions. Analysis using energy dispersive X-ray spectroscopy (EDS) showed that the average atomic percentage (+/-S.D.) of Ba and Co on kaolinite surface were 0.49 +/- 0.11 and 0.61 +/- 0.19 , respectively, indicating a limited uptake capacity of natural kaolinite for both ions.  相似文献   

19.
Polyphosphoinositides (PPIs) and in particular phosphatidylinositol-(4,5)-bisphosphate (PI4,5P2), control many cellular events and bind with variable levels of specificity to hundreds of intracellular proteins in vitro. The much more restricted targeting of proteins to PPIs in cell membranes is thought to result in part from the formation of spatially distinct PIP2 pools, but the mechanisms that cause formation and maintenance of PIP2 clusters are still under debate. The hypothesis that PIP2 forms submicrometer-sized clusters in the membrane by electrostatic interactions with intracellular divalent cations is tested here using lipid monolayer and bilayer model membranes. Competitive binding between Ca(2+) and Mg(2+) to PIP2 is quantified by surface pressure measurements and analyzed by a Langmuir competitive adsorption model. The physical chemical differences among three PIP2 isomers are also investigated. Addition of Ca(2+) but not Mg(2+), Zn(2+), or polyamines to PIP2-containing monolayers induces surface pressure drops coincident with the formation of PIP2 clusters visualized by fluorescence, atomic force, and electron microscopy. Studies of bilayer membranes using steady-state probe-partitioning fluorescence resonance energy transfer (SP-FRET) and fluorescence correlation spectroscopy (FCS) also reveal divalent metal ion (Me(2+))-induced cluster formation or diffusion retardation, which follows the trend: Ca(2+) ? Mg(2+) > Zn(2+), and polyamines have minimal effects. These results suggest that divalent metal ions have substantial effects on PIP2 lateral organization at physiological concentrations, and local fluxes in their cytoplasmic levels can contribute to regulating protein-PIP2 interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号