首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports measurements on single crystals of K3Mn(CN)6, of the magnetic susceptibilities and their anisotropies between 300 and 80K. The crystal field model has been extended to include molecular overlap effects for this highly covalent low-spin compound. The magnetic data explain the occurrence of the hot bands around 18,000 cm?1 reported earlier[1].  相似文献   

2.
The instability of ferromagnetic resonance (FMR) spectra initiated by microwave power was observed in [Mn{(R/S)-pn}2]2[Mn{(R/S)-pn}2H2O][Cr(CN)6] single crystals. It was established that the value of threshold microwave power P th = 0.2−0.9 mW depends on the orientation of the easy magnetization axis relative to the sweeping magnetic field of the spectrometer. P > P th spin-wave bistability occurs in the region of high microwave fields.  相似文献   

3.
Synthesis, crystal structure, and dielectric properties of [C6H4(NH3)2]2ClBiCl6.H2O are reported. The compound crystallizes in the monoclinic system with space group P21/n. The unit cell dimensions are a = 9.836(5), b = 19.582(5), c = 13.082(5) ?, β = 104.731(5)° with Z = 4. The atomic arrangement can be described by an alternation of organic and inorganic layers. The anionic layer is built up of octahedral of [BiCl6]3- arranged in sandwich between the organic layers. The crystal packing is governed by means of the ionic N–H···Cl hydrogen bonds, forming a three-dimensional network. The dielectric properties have been investigated at temperature range from 297 to 410 K at various frequencies (10 Hz–100 kHz). Dielectric studies were performed to confirm results obtained with thermal analysis. The evolution of dielectric constant as a function of temperature and frequency of single crystal has been investigated in order to determine some related parameters.  相似文献   

4.
It is established that, as a result of application of even a small (∼0.5 kV cm−1) bias field E, the maximum of the piezoelectric coefficient d 31 in (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3(x = 0.06, 0.13) crystals shifts from the Vogel-Fulcher temperature to the critical point in the E-T phase diagram of a given composition. The field dependence of the d 31(T) peak magnitude has a maximum near the E values corresponding to the critical point. Original Russian Text ? A.S. Emelyanov, S.I. Raevskaya, F.I. Savenko, I.P. Raevski, M.A. Malitskaya, E.I. Sitalo, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 1, pp. 132–133.  相似文献   

5.
The effects of monovalent doping on the crystallographic, magnetic and magnetocaloric properties of La0.65Ba0.3M0.05MnO3 (M=Na, Ag, K) powder samples, elaborated using the solid state reaction method at high temperature, have been investigated. In our three samples the Mn4+ amount remains constant equal to 40%. The Rietveld refinement of the X-ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with R3¯c space group. All our studied samples undergo a paramagnetic–ferromagnetic transition with decreasing temperature. Using the Arrott plot, the second-order transition Curie temperature TC for M=Na, Ag and K is found to be 310, 300 and 290 K, respectively. The magnetic entropy change, deduced from isothermal magnetization curves, exhibits a maximum |ΔSMMax| of about 2.65, 2.82 and 2.66 J/kg K for M=Na, Ag and K, respectively, in a magnetic applied field change of 5 T. Although these values are modest, the magnetocaloric effect extends over a large temperature range leading to an important value of the relative cooling power (RCP). The RCP values exhibit a nearly linear dependence with the magnetic applied field. The refrigeration capacity in a magnetic applied field of 1 T is found to be 28.8, 27.8 and 25.6 J/kg for M=Na, Ag and K compounds.  相似文献   

6.
The magnetic properties of complex oxides Ln 2Mn2/3Mo4/3O7 (Ln=Sm, Gd, Tb, or Y) with a pyrochlore-type structure are studied in the temperature range 2–300 K. For all compounds in the paramagnetic state, the temperature dependence of the magnetic susceptibility is described by a generalized Curie-Weiss law with a temperature-independent component of ∼10−6 cm3/g and with a Weiss constant Θ<0 and |Θ|<16 K. At low temperatures (T<10–12 K), the compounds have spin-glass properties; they exhibit magnetic and temperature hysteresis and the typical dependences of the imaginary and real parts of the dynamic magnetic susceptibility on temperature and the frequency of an ac magnetic field in a wide range of magnetization relaxation times. The data obtained suggest that d electrons are responsible for the formation of frustrated exchange interactions in the compounds and that 4f electrons in the compounds with Sm or Tb provide strong magnetic-anisotropy effects. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 2, 2004, pp. 287–295. Original Russian Text Copyright ? 2004 by Korolev, Bazuev.  相似文献   

7.
The structure, orientation, and the response of electroresistance to magnetic field H and varying temperature T have been studied for 30-nm-thick La0.67Ba0.33MnO3 (LBMO) films. The deviation of the [001] direction in manganite layers from the normal to the plane of the (LaAlO3)0.29 + (SrAl0.5Ta0.5O3)0.71 substrate strictly corresponds to the vicinal angle of the latter. The minimum yield determined from 227-keV proton scattering spectra is 0.025, signifying a high order of the cationic sublattice in the films. The biaxial compression of stable nuclei of the manganite phase affects their stoichiometry, thus contributing to the depletion of LBMO films in the alkaline-earth element. The maximum electroresistance values have been observed in the films grown at T max ≈ 320 K, a temperature about 20 K lower than the Curie temperature of the corresponding bulk single crystals, and the maximum magnetoresistance (MR ≈ −0.42, μ0 H = 2 T) occurs at T ≈ 300 K. At low temperatures (T < T max/3) and μ0 H < 0.45 T, the electroresistance response of LBMO films to a magnetic field materially depends on the anisotropic magnetoresistance and the intensity of hole scattering from domain walls; when μ0 H > 0.5 T, the major current-carrier relaxation mechanism is the interaction with magnons.  相似文献   

8.
Influence of the partial substitution of paramagnetic Fe3+ ions by diamagnetic Ga3+ ions in the trigonal crystal GdFe3 (BO3)4 on its optical and magnetic properties is studied and discussed in connection with problems common for all antiferromagnets containing 3d 5 ions. Polarized optical absorption spectra and linear birefringence of GdFe3 (BO3)4 and GdFe2.1Ga0.9 (BO3)4 single crystals have been measured in the temperature range 85–293 K. Specific heat temperature dependence (2–300 K) and structure of GdFe2.1Ga0.9 (BO3)4 crystal have been also studied. As a result of substitution of 30% Fe to Ga the Neel temperature diminishes from 38 till 16 K, the strong absorption band edge shifts on 860 cm-1 (0.11 eV) to higher energy and the d-d transitions intensity decreases substantially larger than the Fe concentration does. Strong absorption band edge is shown to be due to Mott-Hubbard transitions. Correlation between position of the strong absorption band edge and the Neel temperature of antiferromagnets has been revealed. Properties of the doubly forbidden d-d transitions in the studied crystals and in other antiferromagnets are explained within the framework of the model of the exchange-vibronic pair absorption, which is theoretically analyzed in detail. The model permitted us to determine the connection between parameters of d-d absorption bands (intensity, width and their temperature dependences), on the one hand, and the exchange, spin-orbit and electron-lattice interactions, on the other hand.  相似文献   

9.
The action of the monovalent M+ cations on the luminescent properties of the mixed M x (1) M 1-x (2) UO2(NO3)3 crystals, where M is Na, K, Rb, Cs, or NH4 , has been investigated. It has been established that the spectral positions of the bands of vibronic transitions depend linearly on the ratio between the concentrations of the M(10) and M(2) cations. It is shown that the crystals considered are composed of l[RbUO2(NO3)3]n[CsUO2(NO3)3] clusters, where l/n = x/(1 - x). The spectral regularities revealed are determined by the partial contributions of the M(1) and M(2) cations to their combined, polarizing action on the uranyl complex and are explained by the ligand nature of its highest occupied molecular orbital.Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 71, No. 6, pp. 827–830, November–December, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

10.
The synthesis and some physical properties of a new quasi-one-dimensional tetracyanidoplatinate, Cs4[Pt(CN)4](CF3SO3)2 (CsCP(OTf)) are reported and described in comparison to the well-known K2[Pt(CN)4]Br0.30·3.2H2O (KCP). Single-crystal X-ray diffraction reveals Pt–Pt spacings to be greater than those of KCP by 5% longitudinal and 38% transverse, but much shorter than comparable spacings in other non-partially oxidized platinates. Anomalies are observed between temperatures 100 K and 200 K: (1) Longitudinal DC conductivity is two orders of magnitude higher and is non-monotonic with temperature, showing a minimum at around 170 K. (2) Nuclear magnetic resonance (NMR) longitudinal relaxation time T1 is at least three orders of magnitude higher than that of KCP, and is also non-monotonic with temperature, showing a sharp peak at around 120 K. Since X-ray diffraction reveals no structural transition at 120 K, these suggest a possible lattice freezing or stiffening at around 120 K.  相似文献   

11.
The electron paramagnetic resonance (EPR) spectra of mixed crystals (BaF2)1 − x (LaF3) x (x = 0, 0.001, 0.002, 0.005, 0.010, 0.020) doped with Ce3+ ions (0.1%) are investigated at a frequency v ≈ 9.5 GHz in magnetic fields up to 1.45 T at temperatures T = 10 and 15 K. The EPR spectrum of “pure” barium fluoride BaF2 (x = 0) is characterized by a single Ce3+-F center with tetragonal symmetry (i.e., the O center with g = 2.601 and g = 1.555). For a lanthanum trifluoride concentration x ≠ 0, the spectrum exhibits new lines due to the presence of the clusters containing Ce3+ and La3+ ions. The intensity of EPR signals from the O centers decreases rapidly as the lanthanum trifluoride concentration x increases. The lines attributed to a paramagnetic center with tetragonal symmetry and strongly anisotropic g factors (i.e., the K center with g = 0.725 and g = 2.52) are separated in the complex EPR spectrum with the use of the angular dependence of the EPR signal intensity measured for the samples with x ≥ 0.002. This center is identified as a cubooctahedral cluster of the La6F37 type in which one of the La3+ ions is replaced by the Ce3+ ion. Original Russian Text ? L.K. Aminov, I.N. Kurkin, S.P. Kurzin, I.A. Gromov, G.V. Mamin, R.M. Rakhmatullin, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 11, pp. 1990–1993.  相似文献   

12.
Variable temperature (300-40 K) 4-probe d.c. conduction studies on Cs2[Pt(CN)4](FHF)0.39 and Rb2[Pt(CN)4](FHF)0.40 are described. In these salts T3D occurs at a lower temperature than in K2[Pt(CN)4]Br0.3·3H2O and this is attributed to the absence of an inter-chain network of hydrogen bonded water molecules in the bifluorides.  相似文献   

13.
New doped manganite multiferroics Tb0.95Bi0.05MnO3, Gd0.75Ce0.25Mn2O5, and Eu0.8Ce0.2Mn2O5, which are semiconductors, have been grown and studied. The starting dielectric multiferroics TbMnO3 and RMn2O5 (R = Gd and Eu) have close magnetic and ferroelectric ordering temperatures of 30–40 K. The crystals studied are multiferroics in which states with giant permittivity and ferromagnetism coexist at room temperature. An analysis of the dielectric properties suggests that, at temperatures T ≥ 180 K, these crystals undergo a phase separation involving dynamic periodic alternation of quasi-2D layers of mixed-valence manganese ions, a process accounting for the onset of charge-induced ferroelectricity. At low temperatures (T < 100 K), a small phase volume in the crystals is occupied by as-grown quasi-2D layers containing dopants and carriers. Most of the crystal volume is occupied by the carrier-free dielectric phase. Thermally activated hopping conduction involving carrier self-organization in the crystal matrix with ferroelectric frustrations drives a phase transition to the state of charge-induced ferroelectricity at T ∼ 180 K. Original Russian Text ? V.A. Sanina, E.I. Golovenchits, V.G. Zalesskiĭ, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 5, pp. 874–882.  相似文献   

14.
Oxidation of [CrII(NCMe)4][BF4]2 with thianthrinium tetrafluoroborate forms [CrIII(NCMe)6][BF4]3 exhibiting two νCN absorptions at 2331 and 2301 cm−1, and has been structurally characterized with an average Cr-N distance of 1.999 Å. From the electronic absorption spectra the ligand field splitting, Δ0, is 20,160 cm−1, which is slightly larger than [CrIII(OH2)6]3+ in accord with the divalent chromium analogues. The 298 K ESR has a resonance at g=1.9884, and the magnetic susceptibility has a 300 K moment of 3.85μB characteristic of S=3/2 Cr(III). The field dependence of the magnetization can be fit to the Brillouin function also characteristic of S=3/2.  相似文献   

15.
A V R Warrier  ABHA 《Pramana》1975,5(5):284-288
Infrared absorption spectrum of Cr(CN) 6 3− doped in KCl crystals show that the site symmetry of the ion is predominantlyC 8 corresponding to one cation vacancy in the nearest neighbour and the other in the next nearest neighbour position with respect to Cr3+ ion. X-irradiation produces complexes of the type Cr(CN) 6 4− and Cr (CN) 6 5− .  相似文献   

16.
We have prepared new semiconductor H3N(CH2)6NH3PbBr4 crystals which are self-assembled organic-inorganic hybrid materials. The grown crystals have been studied by X-ray diffraction, infrared absorption and Raman spectroscopy scattering. We found that the title compound, abbreviated 2C6PbBr4, crystallizes in a two-dimensional (2D) structure with a P21/a space group. In the inorganic semiconductor sub-lattice, the corner sharing PbBr6 octahedra form infinite 2D chains. The organic C6H18N2+ ions form the insulator barriers between the inorganic semiconductor layers. Such a packing leads to a self-assembled multiple quantum well structure. Raman and infrared spectra of the title compound were recorded in the 50-500 and 400-4000 cm−1 frequency regions, respectively. The assignment of the observed Raman lines was performed by comparison with the homologous compounds. Transmission measurements on thin films of 2C6PbBr4, obtained by the spin coating method, revealed a strong absorption peak at 380 nm. Luminescence measurements showed an emission line at 402 nm associated with radiative recombinations of excitons confined within the PbBr6 layers. The electron-hole binding energy is estimated at 180 meV.  相似文献   

17.
This study reports the new and simple synthesis of magnetic La0.7Sr0.3MnO3 (LSMO) nanoparticles by thermal decomposition method using acetate salts of La, Sr and Mn as starting materials. To obtain the LSMO nanoparticles, thermal decomposition of the precursor is carried out at the temperatures of 600, 700, 800, 900, and 1000°C for 6 hours. The synthesized LSMO nanoparticles were characterized by XRD, FT-IR, TEM and SEM. Structural characterization shows that the prepared particles consisted of two phases of LaMnO3 (LMO) and LSMO with crystallite sizes ranging from 18 to 55 nm. All the prepared samples have a perovskite structure which changes from cubic to rhombohedral with the increase in the thermal decomposition temperature. Basic magnetic characteristics such as saturation magnetization (M S) and coercive field (H C) are evaluated by sample vibrating magnetometry at room temperature (20°C). The samples show soft ferromagnetic behavior with M S values of ∼9–55 emu/g and H C values of ∼8–37 Oe, depending on the crystallite size and thermal decomposition temperature. The relationship between the crystallite size and the magnetic properties is presented and discussed. The cytotoxicity of synthesized LSMO nanoparticles was also evaluated with NIH 3T3 cells and the result showed that the synthesized nanoparticles were not toxic to the cells as determined from cell viability in response to the liquid extraction of LSMO nanoparticles.  相似文献   

18.
Ytterbium-and erbium-doped single crystals of scheelite-like double tungstates NaGd(WO4)2, NaLa(WO4)2, and NaBi(WO4)2 and scheelite CaWO4 have been grown by the Czochralski method. The dopant concentrations in crystals are measured, and the coefficients of dopant distribution are determined to range from 0.45 to 3. The lifetimes of the Er3+ states 4 I 11/2 and 4 I 13/2 and the Yb3+ state 2F5/2 are measured, and the absorption and luminescence spectra of the crystals are studied in the vicinity of 1.0 and 1.5 μm. The data obtained are compared with the corresponding characteristics of other crystals. The possible use of the crystals studied as active media of solid-state lasers operating in the range 1.0 and 1.5 μm is discussed. __________ Translated from Optika i Spektroskopiya, Vol. 92, No. 4, 2002, pp. 657–664. Original Russian Text Copyright ? 2002 by Subbotin, Zharikov, Smirnov.  相似文献   

19.
We study IR polarized reflection spectra of solid solutions (Bi2−x Sb x )Te3 (0 < x < 1) in the temperature range 78–293 K and in the excitation range of plasma oscillations of free charge carriers. We reveal that, as the content of Sb2Te3 in the solid solution increases from 0 to 50%, the anisotropy of both plasma frequencies and magnetic susceptibility vary insignificantly. This indicates that, at 293 K, these crystals do not show significant changes in the composition of groups of free carriers near the chemical potential level. We have found that to describe the observed anisotropy of plasma frequencies, it is necessary to take into account the effect of heavy holes of the valence band. This is also confirmed by the results of the study of the temperature behavior of plasma reflection spectra, which exhibit regularities that are similar to anomalous temperature changes of the Hall coefficient. We show that a decrease in plasma frequencies with increasing temperature cannot be described by an increase in the effective mass of charge carriers in accordance with the expression m* ∼ T 0.17, which was obtained upon interpretation of temperature dependences of a number of kinetic coefficients. We use the empirical Moss rule ɛ2 E g to estimate the rate of decrease of the thermal band gap dE g /dT = −1.6 × 10−4 eV/deg in a crystal that contains 25% Sb2Te3.  相似文献   

20.
K. Senapati  R. C. Budhani 《Pramana》2007,69(2):267-275
An experimental study of proximity effect in La0.67Sr0.33MnO3-YBa2CU3O7-La0.67Sr0.33MnO3 trilayers is reported. Transport measurements on these samples show clear oscillations in critical current (I c) as the thickness of La0.67Sr0.33MnO3 layers (d F) is scanned from ∼50 ? to ∼ 1100 ?. In the light of existing theories of ferromagnet-superconductor (FM-SC) heterostructures, this observation suggests a long range proximity effect in the manganite, modulated by its weak exchange energy (∼2 meV). The observed modulation of the magnetic coupling between the ferromagnetic LSMO layers as a function of d F, also suggests an oscillatory behavior of the SC order parameter near the FM-SC interface.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号