首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The steady two-dimensional laminar boundary layer flow of a power-law fluid past a permeable stretching wedge beneath a variable free stream is studied in this paper. Using appropriate similarity variables, the governing equations are reduced to a single third order highly nonlinear ordinary differential equation in the dimensionless stream function, which is solved numerically using the Runge-Kutta scheme coupled with a conventional shooting procedure. The flow is governed by the wedge velocity parameter λ, the transpiration parameter f0, the fluid power-law index n, and the computed wall shear stress is f″(0). It is found that dual solutions exist for each value of f0, m and n considered in λ − f″(0) parameter space. A stability analysis for this self-similar flow reveals that for each value of f0, m and n, lower solution branches are unstable while upper solution branches are stable. Very good agreements are found between the results of the present paper and that of Weidman et al. [28] for n = 1 (Newtonian fluid) and m = 0 (Blasius problem [31]).  相似文献   

2.
In this paper, a new family of unsteady boundary layers over a stretching flat surface was proposed and studied. This new class of unsteady boundary layers involves the flows over a constant speed stretching surface from a slot, and the slot is moving at a certain speed. Depending on the slot moving parameter, the flow can be treated as a stretching sheet problem or a shrinking sheet problem. Both the momentum and thermal boundary layers were studied. Under special conditions, the solutions reduce to the unsteady Rayleigh problem and the steady Sakiadis stretching sheet problem. Solutions only exist for a certain range of the slot moving parameter, α. Two solutions are found for −53.55° < α < −45°. There are also two solution branches for the thermal boundary layers at any given Prandtl number in this range. Compared with the upper solution branch, the lower solution branch leads to simultaneous reduction in wall drag and heat transfer rate. The results also show that the motion of the slot greatly affects the wall drag and heat transfer characteristics near the wall and the temperature and velocity distributions in the fluids.  相似文献   

3.
A multiplicity result for the singular ordinary differential equation y+λx−2yσ=0, posed in the interval (0,1), with the boundary conditions y(0)=0 and y(1)=γ, where σ>1, λ>0 and γ?0 are real parameters, is presented. Using a logarithmic transformation and an integral equation method, we show that there exists Σ?∈(0,σ/2] such that a solution to the above problem is possible if and only if λγσ−1?Σ?. For 0<λγσ−1<Σ?, there are multiple positive solutions, while if γ=(λ−1Σ?)1/(σ−1) the problem has a unique positive solution which is monotonic increasing. The asymptotic behavior of y(x) as x0+ is also given, which allows us to establish the absence of positive solution to the singular Dirichlet elliptic problem −Δu=d−2(x)uσ in Ω, where ΩRN, N?2, is a smooth bounded domain and d(x)=dist(x,∂Ω).  相似文献   

4.
We consider the nonlinear eigenvalue problem on an interval−u″(t)+g(u(t))=λsinu(t),u(t)>0,t∈I:=(−T,T),u(±T)=0,where λ > 0 is a parameter and T > 0 is a constant. It is known that if λ ? 1, then the corresponding solution has boundary layers. In this paper, we characterize λ by the boundary layers of the solution when λ ? 1 from a variational point of view. To this end, we parameterize a solution pair (λ, u) by a new parameter 0 < ?< T, which characterizes the boundary layers of the solution, and establish precise asymptotic formulas for λ(?) with exact second term as ? → 0. It turns out that the second term is a constant which is explicitly determined by the nonlinearity g.  相似文献   

5.
The effects of suction and injection on steady laminar mixed convection boundary layer flow over a permeable horizontal flat plate in a viscous and incompressible fluid is investigated in this paper. The similarity solutions of the governing boundary layer equations are obtained for some values of the suction and injection parameter f0, the constant exponent n of the wall temperature as well as the mixed convection parameter λ. The resulting system of nonlinear ordinary differential equations is solved numerically for both assisting and opposing flow regimes using a finite-difference scheme known as the Keller-box method. Numerical results for the reduced skin friction coefficient, the reduced local Nusselt number, and the velocity and temperature profiles are obtained for various values of the parameters considered. Dual solutions are found to exist for the opposing flow.  相似文献   

6.
The magnetohydrodynamic steady-state laminar flow of a viscous incompressible and electrically conducting fluid over a continuous permeable stretching surface is considered. It is shown that in the presence of a vertical inverse-linear magnetic field, we establish a sufficient condition for the existence of exact solutions of this problem with respect to the three parameters: the magnetic parameter M, the suction/injection parameter γ, and the stretching parameter ξ. Numerical results are also obtained and give the effect of the suction parameter and the magnetic parameter on the velocity.  相似文献   

7.
In this paper, we present similarity solutions for the nano boundary layer flows with Navier boundary condition. We consider viscous flows over a two-dimensional stretching surface and an axisymmetric stretching surface. The resulting nonlinear ordinary differential equations are solved analytically by the Homotopy Analysis Method. Numerical solutions are obtained by using a boundary value problem solver, and are shown to agree well with the analytical solutions. The effects of the slip parameter K and the suction parameter s on the fluid velocity and on the tangential stress are investigated and discussed. As expected, we find that for such fluid flows at nano scales, the shear stress at the wall decreases (in an absolute sense) with an increase in the slip parameter K.  相似文献   

8.
We employ variational techniques to study the existence and multiplicity of positive solutions of semilinear equations of the form − Δu = λh(x)H(u − a)uq + u2* − 1 in RN, where λ, a > 0 are parameters, h(x) is both nonnegative and integrable on RN, H is the Heaviside function, 2* is the critical Sobolev exponent, and 0 ≤ q < 2* − 1. We obtain existence, multiplicity and regularity of solutions by distinguishing the cases 0 ≤ q ≤ 1 and 1 < q < 2* − 1.  相似文献   

9.
We consider the boundary value problem (?p(u′))′ + λF(tu) = 0, with p > 1, t ∈ (0, 1), u(0) = u(1) = 0, and with λ > 0. The value of λ is chosen so that the boundary value problem has a positive solution. In addition, we derive an explicit interval for λ such that, for any λ in this interval, the existence of a positive solution to the boundary value problem is guaranteed. In addition, the existence of two positive solutions for λ in an appropriate interval is also discussed.  相似文献   

10.
We are interested in entire solutions of the Allen–Cahn equation Δu−F(u)=0ΔuF(u)=0 which have some special structure at infinity. In this equation, the function F is an even, double well potential. The solutions we are interested in have their zero set asymptotic to 4 half oriented affine lines at infinity and, along each of these half affine lines, the solutions are asymptotic to the one dimensional heteroclinic solution: such solutions are called 4-ended solutions  . The main result of our paper states that, for any θ∈(0,π/2)θ(0,π/2), there exists a 4-ended solution of the Allen–Cahn equation whose zero set is at infinity asymptotic to the half oriented affine lines making the angles θ  , π−θπθ, π+θπ+θ and 2π−θ2πθ with the x-axis. This paper is part of a program whose aim is to classify all 2k  -ended solutions of the Allen–Cahn equation in dimension 2, for k?2k?2.  相似文献   

11.
We consider the Cauchy problem of the Ostrovsky equation. We first prove the time local well-posedness in the anisotropic Sobolev space Hs,a with s>−a/2−3/4 and 0?a?−1 by the Fourier restriction norm method. This result include the time local well-posedness in Hs with s>−3/4 for both positive and negative dissipation, namely for both βγ>0 and βγ<0. We next consider the weak rotation limit. We prove that the solution of the Ostrovsky equation converges to the solution of the KdV equation when the rotation parameter γ goes to 0 and the initial data of the KdV equation is in L2. To show this result, we prove a bilinear estimate which is uniform with respect to γ.  相似文献   

12.
We prove finite time extinction of the solution of the equation ut−Δu+χ{u>0}(uβλf(u))=0 in Ω×(0,∞) with boundary data u(x,t)=0 on ∂Ω×(0,∞) and initial condition u(x,0)=u0(x) in Ω, where ΩRN is a bounded smooth domain, 0<β<1 and λ>0 is a parameter. For every small enough λ>0 there exists a time t0>0 such that the solution is identically equal to zero.  相似文献   

13.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

14.
In this paper, the problem of buoyancy driven micropolar fluid flow within an annulus formed between two circular concentric/eccentric tubes has been numerically investigated using Fourier spectral method. The annulus inner wall is uniformly heated and maintained at constant heat flux while the outer wall is cooled and kept at constant temperature. The full governing equations of linear momentum, angular momentum and energy have been solved to give the details of flow and thermal fields. The heat convection process in the annulus is mainly controlled by modified Rayleigh number Ra, Prandtl number Pr, radius ratio Rr, eccentricity, e and material parameters of Micropolar fluid. The material parameters are dimensionless spin gradient viscosity λ, dimensionless micro-inertia density B and dimensionless vortex viscosity D. The study considered a range of modified Ra up to 105 and is carried out at three values of Pr, namely Pr = 0.1, 1.0 and 7.0, and at three values of parameter D, namely, D = 2, 4, 8 while the eccentricity is varied between −0.65 and +0.65. The radius ratio is fixed at 2.6 while the material parameters B and λ are assigned the value of 1. The effect of the controlling parameters on flow and thermal fields has been investigated with emphasis on the effect of these parameters on local and mean inner wall temperatures. The study has shown that for certain controlling parameters the steady mean temperature of inner wall of the annulus is maximum at a certain eccentricity. The study has also shown that as the parameter D increases the steady mean inner wall temperature increases. Moreover, the study has shown that as the Pr increases the mean inner wall temperature decreases.  相似文献   

15.
The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter (f0) and the ratio of free stream velocity to boundary velocity parameter (λ) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values off 0,m and λ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.  相似文献   

16.
The similarity equations for the free convection boundary-layer flow on a vertical plate with prescribed wall temperature and transpiration velocity are considered. The range of existence of solution is discussed first. For blowing this is seen to be independent of the transpiration parameter , depending only on the Prandtl number. For suction this range of existence of solutions is seen to depend on as well. Asymptotic solutions for strong suction and strong blowing are derived and compared with numerical solutions of the similarity equations.  相似文献   

17.
We consider an ordinary differential equation with f(0)=a, f(0)=1, f(∞):=limt→∞f(t)=0, where β is a real constant. The given problem may arise from the study of steady free convection flow over a vertical semi-infinite flat plate in a porous medium, or the study of a boundary layer flow over a vertical stretching wall. In this paper, the structure of solutions for the cases of β?−2 is studied. Combining the results of [B. Brighi, T. Sari, Blowing-up coordinates for a similarity boundary layer equation, Discrete Contin. Dyn. Syst. 5 (2005) 929-948; J.-S. Guo, J.-C. Tsai, The structure of solution for a third order differential equation in boundary layer theory, Japan J. Indust. Appl. Math. 22 (2005) 311-351; J.-C. Tsai, Similarity solutions for boundary layer flows with prescribed surface temperature, Appl. Math. Lett. 21 (1) (2008) 67-73], we conclude that the given problem may possess at most two types solutions for βR. Moreover, multiple solutions are also verified for various pairs of (a,β).  相似文献   

18.
The effects of homogeneous–heterogeneous reactions on the steady boundary layer flow near the stagnation point on a stretching surface is studied. The possible steady-states of this system are analyzed in the case when the diffusion coefficients of both reactant and auto catalyst are equal. The strength of this effect is represented by the dimensionless parameter K and Ks. It is shown that for a fluid of small kinematic viscosity, a boundary layer is formed when the stretching velocity is less than the free stream velocity and an inverted boundary layer is formed when the stretching velocity exceeds the free stream velocity. The uniqueness of this problem lies on the fact that the solutions are possible for all values of λ > 0 (stretching surface), while for λ < 0 (shrinking surface), solutions are possible only for its limited range.  相似文献   

19.
The one-dimensional planar Bratu problem is uxx + λ exp(u) = 0 subject to u(±1) = 0. Because there is an analytical solution, this problem has been widely used to test numerical and perturbative schemes. We show that over the entire lower branch, and most of the upper branch, the solution is well approximated by a parabola, u(x) ≈ u0 (1 − x2) where u0 is determined by collocation at a single point x = ξ. The collocation equation can be solved explicitly in terms of the Lambert W-function as u(0) ≈ −W(−λ(1 − ξ2)/2)/(1 − ξ2) where both real-valued branches of the W-function yield good approximations to the two branches of the Bratu function. We carefully analyze the consequences of the choice of ξ. We also analyze the rate of convergence of a series of even Chebyshev polynomials which extends the one-point approximation to arbitrary accuracy. The Bratu function is so smooth that it is actually poor for comparing methods because even a bad, inefficient algorithm is successful. It is, however, a solution so smooth that a numerical scheme (the collocation or pseudospectral method) yields an explicit, analytical approximation. We also fill some gaps in theory of the Bratu equation. We prove that the general solution can be written in terms of a single, parameter-free β(x) without knowledge of the explicit solution. The analytical solution can only be evaluated by solving a transcendental eigenrelation whose solution is not known explicitly. We give three overlapping perturbative approximations to the eigenrelation, allowing the analytical solution to be easily evaluated throughout the entire parameter space.  相似文献   

20.
In this paper, we investigate the multiple and infinitely solvability of positive solutions for nonlinear fractional differential equation Du(t)=tνf(u), 0<t<1, where D=tβδDβγδ,δ, β>0, γ?0, 0<δ<1, ν>−β(γ+1). Our main work is to deal with limit case of f(s)/s as s→0 or s→∞ and Φ(s)/s, Ψ(s)/s as s→0 or s→∞, where Φ(s), Ψ(s) are functions connected with function f. In J. Math. Appl. 252 (2000) 804-812, we consider the existence of a positive solution for the particular case of Eq. (1.1), i.e., the Riemann-Liouville type (β=1, γ=0) nonlinear fractional differential equation, using the super-lower solutions method. Here, we devote to the existence of positive solution and multi-positive solutions for Eq. (1.1) by means of the fixed point theorems for the cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号