首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The reaction of arylacetylenes 1 and N,N-dimethylformamide dimethylacetal (2a, DMF-DMA) afforded the corresponding arylpropargyl aldehydes 3 in moderate yields. Similarly, the reaction of 1 and N,N-dimethylacetamide dimethylacetal (2b, DMA-DMA) gave 4-aryl-3-butyn-2-ones 4.  相似文献   

2.
The efficient and simple routes for the synthesis of various ferrocenyl derivatives from ferrocenylcarbinols and N,N′-thiocarbonyldiimidazole (TCDI) are described. It involves grinding the two substrates in a Pyrex tube with a glass rod at room temperature. The reaction of ferrocenylmethanol (1a) provided S,S-bis(ferrocenylmethyl)dithiocarbonate (1b), whose crystal structure and a plausible mechanism for its formation are also reported. The reaction of 1-ferrocenyl-1-phenylmethanol (2a) and 1-ferrocenylbutanol (2b) gave the products 2c and 2d, respectively. The reaction of ω-ferrocenyl alcohols 4-ferrocenylphenol (3a) and 6-ferrocenylhexan-1-ol (3b) yielded the products 3c and 3d, respectively. Reaction of 1,1′-ferrocenedimethanol (3e) afforded 3f in moderate yield, and by contrast, it was not similar to 1b. Reaction of [4-(trifluoromethyl)phenyl]methanol (4a) provided the thiocarbonate 4b in good yield.  相似文献   

3.
Thermolysis of Ni(OTf)2 in 2-phenyl-pyridine or 2-tolyl-pyridine afforded the cationic chelate derivatives, [bis(2-aryl-pyridine)Ni{(2-aryl-κC2)pyridine-κN}]OTf (aryl = phenyl, 1a; tolyl, 1b). Addition of KBr to 1a and LiBr to 1b provided the bromides, (2-aryl-pyridine)BrNi{(2-aryl-κC2)pyridine-κN} (aryl = phenyl, 2a; tolyl, 2b). When subjected to KOtBu in Et2O, the bromides generated the entitled bis-cyclometalated compounds, Ni{(2-aryl-κC2)pyridine-κN}2 (aryl = phenyl, 3a; tolyl, 3b). These compounds insert diphenylacetylene into one cyclometalate arm to produce [(2-aryl-κC2)pyridine-κN]Ni[2-(2-(1,2-diphenylethenyl-κC2)aryl)pyridine-κN] (aryl = phenyl, 4a; p-tolyl, 4b). X-ray crystallographic studies were conducted on 1a, 2a, 3a and 4a, and a brief DFT study of 3a confirmed its low spin configuration and rippled geometry.  相似文献   

4.
Palladium complexes of N-phenyl-2-pyridylamine (4) and dipyridylamine substrates (7, 11) have been studied. Due to the coordination ability of the pyridine-nitrogen atoms, the pyridyl substrates, 4, 7, 11 were subjected to Pd(OAc)2 complexations and a number of N-aryl-2-pyridylamine Pd complexes (13-17) were isolated and characterised, in particular by NMR and ESI-MS. A new method for the preparation of the acetato-bridged six-membered ring palladacycle complex (13) of 4 is reported. The dipyridyl amines 7, 11 formed cis/trans bis-dentate acetato-bridged dimeric Pd2Lig2(OAc)2 (14a,b/16a,b) and Pd3Lig2(OAc)4 complexes (15a,b/17a,b). The N-aryl-2-pyridylamine substrates (4, 7, 11) were prepared by oxidative nucleophilic substitution, by 1,3-cycloaddition reaction or by Buchwald amination.  相似文献   

5.
New mesoionic compounds (2H, 3H-thiazolo[3,2-c]oxazol-7-ones) (β) or ketenes ((3-acyl-1,3-thiazolidin-2-ylidene)methanone) (β′) were generated from N-acetyl and N-benzoyl-thiazolidine-2-carboxylic acids (7a,b) using different methods, and their reactivity towards N-(phenylmethylene)benzenesulfonamide (2) and N-(phenylmethylene)aniline (3) was tested. When (7a,b) were treated with (2) and acetic anhydride in refluxing toluene solution, only imidazo[5,1-b]thiazoles (8a,b) were obtained from the mesoionic compound intermediates (β). When the ketene intermediates (β′) were generated from (7a,b) by means of Mukaiyama's reagent, only spiro-β-lactams (9a,b) were isolated.  相似文献   

6.
The series of platinum complexes [PtCl(η2-CH2CH-C6H4-X)(tmeda)](ClO4) (X = H, 1b; 4-OMe, 1c; 3-OMe, 1d; 4-CF3, 1e; 3-CF3, 1f; 3-NO2, 1g; tmeda = N,N,N′,N′-tetramethyl-1,2-ethanediamine) has been considered. In the styrene complex (1b) both solution (NMR) and solid state (X-ray) data indicate a significant difference in the Pt-C bond lengths (the longer bond being that involving the olefin carbon atom carrying the phenyl ring). Such a difference increases when X is an electron donor group (EDG, 1c) and decreases when X is an electron withdrawing group (EWG, 1d-g). The attack of a nucleophile (MeO) to the substituted carbon (Markovnikov type, M) is by far the most favoured in the case of unsubstituted (1b) or EDG-substituted (1c) styrenes. The presence of an EWG (compounds 1d-g) levels off the probability of M and anti-M type of attack. DFT calculations on 1b,c and 1e were also performed. The NLMO analysis reveals the crucial role of the interaction between the filled π orbital of the olefin and the empty d orbital of platinum; the carbon with greater electron density becoming less susceptible of nucleophilic attack.  相似文献   

7.
Diptesh Sil 《Tetrahedron letters》2004,45(49):9025-9027
The synthesis of various ferrocenylarenes (3, 5a, 6) and heteroarenes (5b, c, 7) from 6-ferrocenyl-4-methylsulfanyl-2H-pyran-2-one-3-carbonitrile 1 through nucleophile induced ring transformation reactions has been delineated.  相似文献   

8.
Highly functionalized (E)-stilbenes 3a-m and 4-aryl-6-styryl-pyran-2-ylidineacetonitriles 4a-b have been prepared and delineated through the ring transformation of 6-aryl-3,4-disubstituted-2H-pyran-2-ones 1 with commercially available (E/Z)-4-phenyl-3-buten-2-one 2 without the use of any catalyst.  相似文献   

9.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10300-10308
A novel and efficient regioselective synthesis of various arylated highly congested 7-aryl-5-methylsulfanylindan-4-carbonitriles (3a-f), methyl 7-aryl-5-methylsulfanylindan-4-carboxylates (10a-e) and 7-aryl-5-methylsulfanylindan-4-carboxylic acids (11a-e) through base-catalyzed reaction of 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (1a-f) and methyl 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (9a-e) by cyclopentanone (2) has been delineated. The synthetic potential of 2-pyranone was explored further to generate molecular diversity using 6-aryl-4-sec-amino-2-oxo-2H-pyran-3-carbonitriles (7a-h), 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (5a,b) and methyl 5,6-diaryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (12a,b) as precursors for the ring transformation by cyclopentanone to assess the effects of substituents on the course of the reaction to obtain highly congested indans, 6,7-diaryl-5-methylsulfanylindan-4-carbonitriles (6a,b), 7-aryl-5-(piperidin-1-yl)indan-4-carbonitriles (8a-h) and methyl 6,7-diaryl-5-methylsulfanylindan-4-carboxylates (13a,b).  相似文献   

10.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

11.
《Tetrahedron letters》2004,45(24):4653-4656
The addition of morphanthridine N-oxide (1) to homochiral 3-p-tolylsulfinylfuran-2(5H)-ones (2a and 2b) under mild conditions affords furoisoxazoloazepines (3a and 3b) in high yields and with complete regioselectivity. The π-facial and endo-selectivities are also complete from 2a, which yields anti-3a-endo as the only diastereoisomer, whereas cycloreversion determines that the anti-3b-endo adduct can be almost exclusively isolated from 2b. Proper manipulation of the furoisoxazoloazepines allows the synthesis of the optically pure isoxazoloazepines and pyrroloazepines.  相似文献   

12.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

13.
The reaction of boron heterocycles 1 and 2 with n-butyl lithium and alkyl halides led to (N→B) phenyl[N-alky-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 36(ab), 7(b) and 9(b), where alkyl can be in exo and/or endo position, and phenyl[N-alkyl-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 7(c) and 8(c) isomers, which do not display the intramolecular N→B coordination bond. The existence of steric interactions between N-benzyl and the alkyl group at 2 position was indicated by 1H and 13C NMR, while, the δ(11B) values confirm the tetrahedral and trigonal environment of the 11B nucleus in these compounds. Moreover, the compounds were characterized by COSY, HETCOR and homonuclear proton decoupling experiment. The study of the intramolecular N→B coordination by dynamic NMR afforded a ΔG‡ value of 81.09 kJ/mol for compound 6(b).  相似文献   

14.
A wide variety of monobrominated compounds 2a-l have been prepared in good yields from (E)-1-(2′-hydroxy-4′,6′-dimethoxyphenyl)-3-aryl-2-propen-1-ones (1a-l) through regioselective ring bromination using 1.5 equiv of bromodimethylsulfonium bromide (BDMS) at room temperature. Similarly, some of the 2′-hydroxychalcones can be converted directly into tribromides 3 or dibromides 4 by employing 4.0 equiv of BDMS under different reaction conditions which in turn can be transformed into 8-bromoflavones and 7-bromoaurones on treatment with 0.2 M ethanolic KOH solution. Mild reaction conditions, good yields and no chromatographic separation are some of the salient features of the present protocol.  相似文献   

15.
The reactions of hexachlorocyclotriphosphazene, N3P3Cl6, with mono (1 and 2) and bis(4-fluorobenzyl) diamines (3-5), FPhCH2NH(CH2)nNHR (RH or FPhCH2-), produce mono (1a and 2a) and bis(4-fluorobenzyl) monospirocyclophosphazenes (3a-5a). The tetraaminomonospirocyclophosphazenes (1b-2d) are obtained from the reactions of the partly substituted phosphazenes (1a and 2a) with excess pyrrolidine, morpholine and 1,4-dioxa-8-azaspiro[4,5]decane (DASD), respectively. The tetrachlorobis(4-fluorobenzyl) monospirocyclophosphazenes (4a and 5a) with excess pyrrolidine, morpholine and DASD afford the fully substituted bis(4-fluorobenzyl) monospirocyclophosphazenes (4b, 4d-5d) in boiling THF. In addition, monochlorobis(4-fluorobenzyl) monospirocyclophosphazenes (4e and 4f) have also been isolated from the reactions with excess morpholine and DASD in boiling THF. The structural investigations of the compounds have been verified by elemental analyses, MS, FTIR, 1H, 13C, 19F (for 1d and 2d), 31P NMR, HSQC and HMBC techniques. The crystal structures of 3a, 4a, 5a and 2b have been determined by X-ray crystallography. The compounds 2a-5a, 1b-2d, 4b, 4d-5d, 4e and 4f have been screened for antibacterial effects on bacteria and for antifungal activity against yeast strains. The compounds 1b and 4b showed antimicrobial activity against three species of bacteria, Bacillus subtilis, Bacillus cereus and Staphylococcus aureus, and two fungi, Candida albicans and Candida tropicalis. Minimum inhibitory concentrations (MIC) were determined for 1b and 4b. The MIC values were found to be 5000 μM for each bacteria. The most effective compound, 4b has exhibited activity with a MIC of 312 μM for C. albicans and 625 μM for C. tropicalis. DNA-binding and the nature of the interaction with pBR322 plasmid DNA are studied. All of the compounds induce changes on the DNA mobility and intensity. Prevention of HindIII digestion with the compounds indicates that the compounds bind with AT nucleotides in DNA.  相似文献   

16.
Various phosphorus-supported fluorescent probes have been synthesized by the condensation reaction of multi-functional phosphorus hydrazides with various fluorophore-containing carboxaldehydes. Compounds, thus prepared, in this study are (PhO)2P(O)[N(Me)-NCH-R] (1a, 1b), Ph2P(O)[N(Me)-NCH-R] (2b, 2c, 2d), PhP(O)[N(Me)-NCH-R]2 (3b, 3c), P(S)[N(Me)-NCH-R]3 (4b, 4c), P(O)[N(Me)-NCH-R]3 (5a, 5b, 5c), N3P3(O2C12H8)2[N(Me)-NCH-R]2 (6a, 6b, 6c), N3P3(O2C12H8)[N(Me)-NCH-R]4 (7a, 7b, 7c, 7d) and N3P3[N(Me)-NCH-R]6 (8b, 8c), where R=1-pyrenyl (a), 9-anthracenyl (b), 9-phenanthryl (c) and 7-(N,N′-diethylamino)-3-coumarinyl (d). All of these compounds have been characterized by various analytical techniques including 31P{1H} NMR spectroscopy. Compounds 1b, 2b, 3b, 4b, 5b, 5c and 6d have also been characterized by single crystal X-ray analysis. All of these phosphorus-supported compounds exhibit excellent fluorescence properties in aqueous solution at near physiological conditions.  相似文献   

17.
Three diruthenium(III) compounds Ru2(L)4Cl2, where L is mMeODMBA (N,N′-dimethyl-3-methoxybenzamidinate, 1a), DiMeODMBA (N,N′-dimethyl-3,5-dimethoxy benzamidinate, 1b), or DEBA (N,N′-diethylbenzamidinate, 1c), were prepared from the reactions between Ru2(OAc)4Cl and respective HL under reflux conditions. Metathesis reactions between 1 and LiC2Y resulted in bis-alkynyl derivatives Ru2(L)4(C2Y)2 [Y=Ph (2), SiMe3 (3), SiiPr3 (4) and C2SiMe3 (5)]. The parent compounds 1 are paramagnetic (S=1), while bis-alkynyl derivatives 2-5 are diamagnetic and display well-solved 1H- and 13C-NMR spectra. Molecular structures of compounds 1b, 1c, 2c, 3c and 4b were established through single crystal X-ray diffraction studies, which revealed RuRu bond lengths of ca. 2.32 Å for parent compounds 1 and 2.45 Å for bis-alkynyl derivatives. Cyclic voltammograms of all compounds feature three one-electron couples: an oxidation and two reductions, while the reversibility of observed couples depends on the nature of axial ligands.  相似文献   

18.
6-(Morpholin-4-yl)benzo[h]quinazolin-4(3H)-one derivatives 18a,b were prepared under Buchwald–Hartwig conditions by reacting 6-bromobenzo[h]quinazolin-4(3H)-ones 13a,b with morpholine in the presence of a Pd(OAc)2/XantPhos system in 1,4-dioxane as solvent. The starting 6-bromobenzo[h]quinazolin-4(3H)-ones 13 were synthesized via condensation of the ethyl 1-amino-4-bromonaphthalene-2-carboxylate (11) with formamide (Niementowski reaction), and then reaction of the obtained benzoquinazolinone 9 with appropriates benzyl bromides. Compound 11 was prepared using a three-step procedure involving (a) metalation of the N-Boc- or N-Piv-protected 1-aminonaphthalenes with t-BuLi, followed by reaction with ethyl chloroformate, (b) bromination of the naphthalene ring of ester 3 using NBS, and next (c) deprotecion of the amine group with TFA or HCl. Biological screening of the potential cytotoxicity of compounds 8, 9, 18b on A549 and HT29 cell lines, as well as on the lymphocytes showed that compound 18b has interesting anticancer activities. The detailed synthesis, spectroscopic data, and biological assays were reported.  相似文献   

19.
The results of the thermolysis of 1:2 adducts of stable group-14 element divalent compounds [R2M:, R2=1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl; 1b, M=Ge; 1c, M=Sn] to TEMPO radical are discussed in detail. Whereas the thermal reactions of the 1:2 adducts [R2M(OR)2, R=2,2,6,6-tetramethylpiperidin-N-yl; 3b, M=Ge; 3c, M=Sn] are understood to proceed by the initial homolysis of an M-O bond to give the corresponding aminoxy-substituted group-14 element radicals [R2(RO)M; 2b, M=Ge; 2c, M=Sn] and TEMPO, the subsequent reactions of 2b and 2c were remarkably different to each other; 2b favors the N-O bond fission (path b) to give the corresponding germanone, while 2c prefers the M-O bond fission (path a) to give stannylene (1c). In combining with our previous results for aminoxysilyl radical (2a) [R2(RO)Si], the origin of the remarkable differences in the reactivity among group-14 element radicals 2a-2c is discussed on the basis of the theoretical calculations for model reactions.Improved syntheses of the precursor dichlorogermane and dichlorostannane of germylene (1b) and stannylene (1c), respectively, are described in Section 3.  相似文献   

20.
An innovative synthesis of aryl tethered 1,3-dimethylimidazo[4,5-b]pyrazin-2-ones 4 and 6 has been delineated through base catalyzed ring transformation of 6-aryl-4-(piperidin-1-yl)-2H-pyran-2-one-3-carbonitriles 1 and methyl 6-aryl-4-methylsulfanyl-2H-pyran-2-one-3-carboxylates 5 with 7-acetyl-1,3-dimethyllumazine 2 with subsequent ring contraction of the fused pyrimidine to an imidazole ring. An additional product, methyl [6-(1,3-dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyrazin-5-yl)-4-thiophen-2-ylpyran-2-ylidene]acetate 8b, was also isolated from the reaction of 5 and 2, as a minor constituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号