首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

2.
A novel half-sandwich Zr(IV) complex [η51-N-C5(CH3)4CH2CH2N(CH3)2]ZrCl3 (6) together with zirconocene dichlorides [η5-C5(CH3)4CH2CH2N(CH3)2][η5-C5(CH3)5]ZrCl2 (4) and [η5-C5(CH3)4CH2CH2N(CH3)2]2ZrCl2 (5) have been prepared. Complex 6 has been isolated and characterized in three different forms, namely, as an adduct with THF 6a, an adduct with tetrahydrothiophene 6b, and a solvent-free form 6c. Molecular structures of complexes 4, 6b, and 6c have been established by X-ray diffraction analysis. Complex 6c has been shown to be a monomeric solvent-free half sandwich Zr(IV) complex. The dynamic behavior of complex 6a in a non-solvating medium (an equilibrium between 6a and 6c along with a degenerate interconversion of the Zr-Ccp-CH2-CH2-N(CH3)2-(Zr) pseudo-five-member metallacycle) have been studied by the variable-temperature 1H and 13C{1H} NMR spectroscopy. The activation parameters for the degenerate five-member cycle interconversion have been elucidated.  相似文献   

3.
Half-sandwich [η51N-C5Me4CH2-(2-C5H4N)]MCl3 (M = Ti (4), Zr (5)) and sandwich [η5-C5Me4CH2-(2-C5H4N)][η5-C5Me5]ZrCl2 (6) ring-peralkylated complexes have been prepared and characterized. Evidence of the intramolecular coordination of the side-chain pyridyl group both in 4 and 5 in solutions is provided by NMR spectroscopy data. Crystal structure of an adduct 5-py with one molecule of pyridine has been established by X-ray diffraction analysis.  相似文献   

4.
Sulfur and oxygen functionalized cyclopentandienyl half-sandwich cobalt dicarbonyl complexes [η5-C5H4(CH2)2SCH2CH3]Co(CO)2 (3) and [η5-C5H4(CH2)2OCH3]Co(CO)2 (7) were prepared. Oxidation of 3 or 7 with I2 led to formation of 18-electron complexes [η5-C5H4(CH2)2SCH2CH3]CoI2 (4) and [η5-C5H4(CH2)2OCH3]Co(CO)I2 (8). The reactions of diiodide complex (4) with dilithium 1,2-dicarba-closo-dodecaborane(12)-1,2-dichalcogenolates [(THF)3LiE2C2B10H10Li(THF)]2 [E=S (1a), Se (1b)] afforded 18-electron mononuclear complexes [η5-C5H4(CH2)2SCH2CH3]Co(E2C2B10H10) [E=S (5a), Se (5b)] in which sulfur atoms of side-chain were attached via an intramolecular coordination. Complex 7 reacted with 1a and 1b to give the binuclear complexes {[η5-C5H4(CH2)2OCH3]Co(E2C2B10H10)}2 [E=S (10a), Se (10b)]. The molecular structures of 5a and 10b were determined by X-ray crystallographic analysis. According to the X-ray structure analyses, 10b contains two o-carborane diselenolate bridges, and each CpCo fragment is attached to one terminal and two bridging selenolato ligands. The central Co2Se2 four-membered ring is planar, and the direct metal-metal interaction is absent.  相似文献   

5.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

6.
The fulvene complexes [(η6-C5Me4CH2)Re(CO)2(R)] (1a, RI; 1b, RC6F5) react at the exocyclic methylene carbon with a vinylmagnesium bromide solution to produce the anionic species [(η5-C5Me4CH2CHCH2)Re(CO)2(R)]. Protonation with HCl at 0 °C produces the hydride complexes [trans-5-C5Me4CH2CHCH2)Re(CO)2(R)(H)] (2a, RI; 2b, RC6F5). Thermolysis of an hexane solution of the iodo-hydride (2a) under a CO atmosphere yields the complex [(η5-C5Me4CH2CHCH2)Re(CO)3] (3) and [Re(CO)5I] as by-product. Thermolysis of 2b produced three new products, mainly the chelated complex [(η52-C5Me4CH2CHCH2)Re(CO)2] (4) and complex 3, with a non-coordinated olefin group, in moderated yield, and traces of [Re(CO)5(C6F5)]. Thermolysis of an hexane solution of 2 in presence of an excess of PMe3, afforded the phosphine derivative [(η5-C5Me4CH2CHCH2)Re(CO)2(PMe3)] (5). All the complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopies and mass spectrometry. The molecular structure of 4 has also been determined. The molecule exhibits a formal three-legged piano-stool structure, with two CO groups, and the third position corresponding to the η2-coordination of the propenyl side arm of the η5-C5Me4 ring.  相似文献   

7.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

8.
Elimination of methane during thermolysis of title compounds results in the formation of σ-Ti-C bond to t-butyl or benzyl group. The t-butyl-containing titanocene methyl compound [Ti(III)Me(η5-C5Me4t-Bu)2] (5) eliminates methane at 110 °C to give cleanly [Ti(III)(η51-C5Me4CMe2CH2)(η5-C5Me4t-Bu)] (6). The methyl derivative of analogous benzyl-containing titanocene [Ti(III)Me(η5-C5Me4CH2Ph)2] was not isolated because it eliminated methane at ambient temperature to give [Ti(III)(η51-C5Me4CH2-o-C6H4)(η5-C5Me4CH2Ph)] (7) with one phenyl ring linked to titanium atom in ortho-position. The corresponding titanocene dimethyl compound [TiMe25-C5Me4t-Bu)}2] (9) eliminates two methane molecules at 110 °C to give the singly tucked-in 1,1-dimethylethane-1,2-diyl-tethered titanocene [Ti{η511-C5Me3(CH2)(CMe2CH2)}(η5-C5Me4t-Bu)] (11). In distinction, the analogous benzyl derivative [TiMe25-C5Me4CH2Ph)2] (10) eliminates at 110 °C only one methane molecule to afford [TiMe(η51-C5Me4CH2-o-C6H4)(η5-C5Me4CH2Ph)] (12) containing one phenyl group attached to titanium in o-position and one methyl group persisting on the titanium atom. This compound is stable at 150 °C for at least 3 h. The crystal structures of 5, 6, 7, and 10 were determined.  相似文献   

9.
The singly tucked-in titanocene [Ti(η5-C5Me5)(η51-C5Me4CH2)] (1) reacts smoothly with ethylene glycol or hydroquinone to give bis(titanoceneoxide) (TiIII) complexes [CH2OTi(η5-C5Me5)2]2 (2) and [(η5-C5Me5)2TiOC6H4OTi(η5-C5Me5)2] (3) containing dimethylene and 1,4-phenylene link, respectively. EPR spectra of 2 in 2-methyltetrahydrofuran glass and 3 in toluene glass revealed that the unpaired d1 electrons are in interaction to form triplet state molecules. The Ti-Ti distance derived from the zero-field splittings D for the two conformations of 2 (7.42 Å and 7.66 Å) are in good agreement with the Ti-Ti distance of 7.2430(7) Å from the X-ray diffraction single-crystal analysis. For 3, however, the Ti-Ti distance derived from D (7.65 Å) is by 1.47 Å shorter than the crystallographic distance of 9.1230(8) Å that indicates an enhancement of the through-space dipole-dipole interaction due to the presence of a conjugated quinonide link.  相似文献   

10.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

11.
Four titanium(IV) carboxylate complexes [Ti(η5-C5H5)2(O2CCH2SMes)2] (1), [Ti(η5-C5H4Me)2(O2CCH2SMes)2] (2), [Ti(η5-C5H5)(η5-C5H4SiMe3)(O2CCH2SMes)2] (3) and [Ti(η5-C5Me5)(O2CCH2SMes)3] (4; Mes = 2,4,6-Me3C6H2) have been synthesised by the reaction of the corresponding titanium derivatives [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] and [Ti(η5-C5Me5)Cl3] and two (for 13) or three (for 4) equivalents of mesitylthioacetic acid. Complexes 14 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2 and 4 have been determined by X-ray diffraction studies. The cytotoxic activity of 14 was tested against tumor cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, and normal immunocompetent cells, that is peripheral blood mononuclear cells PBMC and compared with those of the reference complexes [Ti(η5-C5H5)2Cl2] (R1), [Ti(η5-C5H4Me)2Cl2] (R2), [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (R3) and cisplatin. In all cases, the cytotoxic activity of the carboxylate derivatives was higher than that of their corresponding dichloride analogues, indicating a positive effect of the carboxylato ligand on the final anticancer activity. Complexes 14 are more active against K562 (IC50 values from 72.2 to 87.9 μM) than against HeLa (IC50 values from 107.2 to 142.2 μM) and Fem-x cells (IC50 values from 90.2 to 191.4 μM).  相似文献   

12.
The reaction of the complex [{(η6-C6Me6)Ru(μ-Cl)Cl}2] 1 with sodium azide ligand gave two new dimers of the composition [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2 and [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3, depending upon the reaction conditions. Complex 3 with excess of sodium azide in ethanol yielded complex 2. These complexes undergo substitution reactions with monodentate ligands to yield monomeric complexes of the type [(η6-C6Me6)Ru(X)(N3)(L)] {X = N3, Cl, L = PPh3 (4a, 9a); PMe2Ph (4b, 9b); AsPh3 (4c, 9c); X = N3, L = pyrazole (Hpz) (5a); 3-methylpyrazole (3-Hmpz) (5b) and 3,5-dimethyl-pyrazole (3,5-Hdmpz) (5c)}. Complexes 2 and 3 also react with bidentate ligands to give bridging complexes of the type [{(η6-C6Me6)Ru(N3)(X)]2(μ-L)} {X = N3, Cl, L = 1,2-bis(diphenylphosphino)methane (dppm) (6, 10); 1,2-bis(diphenylphosphino)ethane (dppe) (7, 11); 1,2-bis(diphenylphosphino)propane (dppp) (8, 12); X = Cl, L = 4,4-bipyridine (4,4′-bipy) (13)}. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as by analytical data.The molecular structures of the representative complexes [{(η6-C6Me6)Ru(μ-N3)(N3)}2] 2, [{(η6-C6Me6)Ru(μ-N3)Cl}2] 3,[(η6-C6Me6)Ru(N3)2(PPh3)] 4a and [{(η6-C6Me6)Ru(N3)2}2 (μ-dppm)] 6 were established by single crystal X-ray diffraction studies.  相似文献   

13.
The dinuclear dichloro complexes [(η6-arene)2Ru2(μ-Cl)2Cl2] and [(η5-C5Me5)2M2(μ-Cl)2Cl2] react with 2-(pyridine-2-yl)thiazole (pyTz) to afford the cationic complexes [(η6-arene)Ru(pyTz)Cl]+ (arene = C6H61, p-iPrC6H4Me 2 or C6Me63) and [(η5-C5Me5)M(pyTz)Cl]+ (M = Rh 4 or Ir 5), isolated as the chloride salts. The reaction of 2 and 3 with SnCl2 leads to the dinuclear heterometallic trichlorostannyl derivatives [(η6-p-iPrC6H4Me)Ru(pyTz)(SnCl3)]+ (6) and [(η6-C6Me6)Ru(pyTz)(SnCl3)]+ (7), respectively, also isolated as the chloride salts. The molecular structures of 4, 5 and 7 have been established by single-crystal X-ray structure analyses of the corresponding hexafluorophosphate salts. The in vitro anticancer activities of the metal complexes on human ovarian cancer cell lines A2780 and A2780cisR (cisplatin-resistant), as well as their interactions with plasmid DNA and the model protein ubiquitin, have been investigated.  相似文献   

14.
The allyl-substituted group 4 metal complexes [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti, R = CH2CHCH2, (2); R = CH2C(CH3)CH2 (3); M = Zr, R = CH2CHCH2 (4), R = CH2C(CH3)CH2 (5)] have been synthesized by the reaction of allyl ansa-magnesocene derivatives and the tetrachloride salts of the corresponding transition metal. The dialkyl complexes ] [M = Ti, R = CH2=CHCH2, R′ = Me (6), R′ = CH2Ph (7); R = CH2C(CH3)CH2, R′ = Me (8), R′ = CH2Ph (9); M = Zr, R = CH2CHCH2, R′ = Me (10), R′ = CH2Ph (11); R = CH2C(CH3)CH2, R′ = Me (12), R′ = CH2Ph (13)] have been synthesized by the reaction of the corresponding ansa-metallocene dichloride complexes 2-5 and two molar equivalents of the alkyl Grignard reagent. Compounds 2-5 reacted with H2 under catalytic conditions (Wilkinson’s catalyst or Pd/C) to give the hydrogenation products [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = CH2CH2CH3 (14) or R = CH2CH(CH3)2 (15); M = Zr and R = CH2CH2CH3 (16) or R = CH2CH(CH3)2 (17)]. The reactivity of 2-5 has also been tested in hydroboration and hydrosilylation reactions. The hydroboration reactions of 3, 4 and 5 with 9-borabicyclo[3.3.1]nonane (9-BBN) yielded the complexes [M{(9-BBN)CH2CH(R)CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (18); M = Zr and R = H (19) or R = CH3 (20)]. The reaction with the silane reagents HSiMe2Cl gave the corresponding [M{ClMe2SiCH2CHRCH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (21); M = Zr and R = H (22) or R = CH3 (23)]. The reaction of 22 with t-BuMe2SiOH produced a new complex [Zr{t-BuMe2SiOSi(Me2)CH2CH2CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] (24) through the formation of Si-O-Si bonds. On the other hand, reactivity studies of some zirconocene complexes were carried out, with the insertion reaction of phenyl isocyanate (PhNCO) into the zirconium-carbon σ-bond of [Zr{(n-Bu)CH(η5-C5Me4)(η5-C5H4)}2Me2] (25) giving [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr{Me{κ2-O,N-OC(Me)NPh}] as a mixture of two isomers 26a-b. The reaction of [Zr{(n-Bu)(H)C(η5-C5Me4)(η5-C5H4)}(CH2Ph)2] (27) with CO also provided a mixture of two isomers [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr(CH2Ph){κ2-O,C-COCH2Ph}] 28a-b. The molecular structures of 4, 11, 16 and 17 have been determined by single-crystal X-ray diffraction studies.  相似文献   

15.
You-Chen Hsiao 《Tetrahedron》2008,64(40):9507-9514
Several cobalt-containing P,N-ligands, alkyne-bridged dicobalt phosphines [(μ-PPh2CH2PPh2)Co2(CO)4(μ,η-Me2NCH2CCPR2)] (4a: R=tBu; 4b: R=Ph; 4c: R=Cy), were prepared from the reactions of corresponding alkynylphosphines Me2NCH2CCPR2 (2a: R=tBu; 2b: R=Ph; 2c: R=Cy) with a dppm-bridged dicobalt complex [Co2(CO)6(μ-P,P-PPh2CH2PPh2)] 3. A unique palladium complex ion pair [(μ-PPh2CH2PPh2)Co2(CO)4(μ,η-Me2NCH2CCP (tBu)2)Pd(η3-C3H5)]+[(η3-C3H5)PdCl2]7a was obtained from the reaction of 4a with [(η3-C3H5)PdCl]2. Compounds 4a, 4b, and 4c are authentic cobalt-containing P,N-bidentate ligands and can be used for ligation of palladium from various sources such as Pd(OAc)2 or [(η3-C3H5)PdCl]2. Satisfactory efficiencies were observed for the amination reactions of aryl bromides with morpholine employing either a 4a-chelated palladium complex formed in situ or pre-formed 7a as the catalytic precursor.  相似文献   

16.
The new cationic mononuclear complexes [(η6-arene)Ru(Ph-BIAN)Cl]BF46-arene = benzene (1), p-cymene (2)], [(η5-C5H5)Ru(Ph-BIAN)PPh3]BF4 (3) and [(η5-C5Me5)M(Ph-BIAN)Cl]BF4 [M = Rh (4), Ir (5)] incorporating 1,2-bis(phenylimino)acenaphthene (Ph-BIAN) are reported. The complexes have been fully characterized by analytical and spectral (IR, NMR, FAB-MS, electronic and emission) studies. The molecular structure of the representative iridium complex [(η5-C5Me5)Ir(Ph-BIAN)Cl]BF4 has been determined crystallographically. Complexes 15 effectively catalyze the reduction of terephthaldehyde in the presence of HCOOH/CH3COONa in water under aerobic conditions and, among these complexes the rhodium complex [(η5-C5Me5)Rh(Ph-BIAN)Cl]BF4 (4) displays the most effective catalytic activity.  相似文献   

17.
Treatment of decamethylzirconocene dichloride (η5-Cp)2ZrCl2 with amalgamated magnesium in pyridine results in formation of the o-C–H bond activation product [η5-C5Me5]2ZrH[η2-κC,N-C5H4N] (1). X-ray diffraction analysis (solid state) and NMR spectroscopy data (solutions) reveal the lateral positioning of the nitrogen atom in 1. At elevated temperatures, complex 1 smoothly rearranges into its isomer 2 with medial positioning of the N-atom. The parameters of equilibrium between 1 and 2 were measured at different temperatures. A reaction of 1 or a mixture of 1 and 2 (ca. 1:10) with CDCl3 smoothly and under mild conditions leads to one and the same η2-pyridyl chloride complex [η5-C5Me5]2ZrCl[η2-κC,N-C5H4N] (3) with medial positioning of the N-atom. The thermodynamic and mechanistic concepts of the paper are discussed with application of the DFT computational data.  相似文献   

18.
[(η5-C5H5)ZrCl25-C5H4)CMe2(C5H5)] reacted with Co2(CO)8 to produce a heterodinuclear Zr(IV)-Co(I) complex [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)Co(CO)2] (3). Complex 3 underwent oxidative addition of I2 to give [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(CO)] (4) having Zr(IV) and Co(III) centers. The carbonyl ligand of 4 was easily replaced with P(OMe)3 and PPh3 to afford [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(L)] (5: L = P(OMe)3, 6: L = PPh3). Structures of 5 and 6 were determined by X-ray crystallography. These Zr-Co heterodinuclear complexes catalyzed polymerization of ethylene and propylene.  相似文献   

19.
The complex [(η6-p-cymene)Ru(μ-Cl)Cl]21 reacts with pyrazole ligands (3a-g) in acetonitrile to afford the amidine derivatives of the type [(η6-p-cymene)Ru(L)(3,5-HRR′pz)](BF4)2 (4a-f), where L = {HNC(Me)3,5-RR′pz}; R, R′ = H (4a); H, CH3 (4b); C6H5 (4c); CH3, C6H5 (4d) OCH3 (4e); and OC2H5 (4f), respectively. The ligand L is generated in situ through the condensation of 3,5-HRR′pz with acetonitrile under the influence of [(η6-p-cymene)RuCl2]2. The complex [(η6-C6Me6)Ru(μ-Cl)Cl]22 reacts with pyrazole ligands in acetonitrile to yield bis-pyrazole derivatives such as [(η6-C6Me6)Ru (3,5-HRR′pz)2Cl](BF4) (5a-b), where R, R′ = H (5a); H, CH3 (5b), as well as dimeric complexes of pyrazole substituted chloro bridged derivatives [{(η6-C6Me6)Ru(μ-Cl) (3,5-HRR′pz)}2](BF4)2 (5c-g), where R, R′ = CH3 (5c); C6H5 (5d); CH3, C6H5 (5e); OCH3 (5f); and OC2H5 (5g), respectively. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures1 of representative complexes [(η6-C6Me6)Ru{3(5)-Hmpz}2Cl]+5b, [(η6-C6Me6)Ru(μ-Cl)(3,5-Hdmpz)]22+5c and [(η6-C6Me6)Ru(μ-Cl){3(5)Me,5(3)Ph-Hpz}]22+5e were established by single crystal X-ray diffraction studies.  相似文献   

20.
The reaction of 2,6-dimethoxypyridine-3-carboxylic acid (DMPH) with different precursors [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H4SiMe3)(η5-C5H5)Cl2], [Ti(η5-C5Me5)Cl3], SnMe3Cl and GatBu3 yielded the complexes [Ti(η5-C5H5)2(DMP-κO)2] (1), [Ti(η5-C5H4Me)2(DMP-κO)2] (2), [Ti(η5-C5H4SiMe3)(η5-C5H5)(DMP-κO)2] (3), [Ti(η5-C5Me5)(DMP-κ2O,O′)3] (4), [SnMe3(μ-DMP-κOO′)] (5), and [GatBu2(μ-DMP-κOO′)]2 (6). 1-6 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2, 3, 5 and 6 have been determined by X-ray diffraction studies. The cytotoxic activity of 1-6 was tested against the tumour cell lines human adenocarcinoma HeLa, human myelogenous leukaemia K562, human malignant melanoma Fem-x and human breast carcinoma MDA-MB-361. The results of this study show a higher cytotoxicity of the tin(IV) and gallium(III) derivatives in comparison to their titanium(IV) counterparts. Furthermore, the different titanium compounds showed differences in their cytotoxicities with a higher activity of complex 4 (mono-(cyclopentadienyl) derivative) compared to that of 1-3 (bis-(cyclopentadienyl) complexes). A qualitative UV-vis study of the interactions of these complexes with DNA has also been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号