首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

Diffusion imaging represents a new imaging tool for the diagnosis of breast cancer. This study aims to investigate the role of diffusion-weighted MRI with background body signal suppression (DWIBS) for evaluating breast lesions.

Methods

90 patients were prospectively evaluated by MRI with STIR, TSE-T2, contrast enhanced THRIVE-T1 and DWIBS sequences. DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤ 1.44 × 10- 3 mm2/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated.

Results

In 53/90 (59%) patients, DWIBS indicated the presence of breast lesions, 16 (30%) with ADC values of  > 1.44 and 37 (70%) with ADC ≤ 1.44. The comparison with histology showed 25 malignant and 28 benign lesions. DWIBS sequences obtained sensitivity, specificity, DA, PPV and NPV values of 100, 82, 87, 68 and 100%, respectively.

Conclusion

DWIBS can be proposed in the MRI breast protocol representing an accurate diagnostic complement.  相似文献   

2.

Purpose

To evaluate the use of the intravoxel incoherent motion (IVIM) technique in half-Fourier single-shot turbo spin-echo (HASTE) diffusion-weighted imaging (DWI), and to compare its accuracy to that of apparent diffusion coefficient (ADC) to predict malignancy in head and neck tumors.

Patients and methods

HASTE DW images of 33 patients with head and neck tumors (10 benign and 23 malignant) were evaluated. Using the IVIM technique, parameters (D, true diffusion coefficient; f, perfusion fraction; D*, pseudodiffusion coefficient) were calculated for each tumor. ADC values were measured over a range of b values from 0 to 1000 s/mm2. IVIM parameters and ADC values in benign and malignant tumors were compared using Student's t test, receiver operating characteristics (ROC) analysis, and multivariate logistic regression modeling.

Results

Mean ADC and D values of malignant tumors were significantly lower than those of benign tumors (P < 0.05). Mean D* values of malignant tumors were significantly higher than those of benign tumors (P < 0.05). There was no significant difference in mean f values between malignant and benign tumors (P > 0.05). The technique of combining D and D* was the best for predicting malignancy; accuracy for this model was higher than that for ADC.

Conclusions

The IVIM technique may be applied in HASTE DWI as a diagnostic tool to predict malignancy in head and neck masses. The use of D and D* in combination increases the diagnostic accuracy in comparison with ADC.  相似文献   

3.

Objectives

Diffusion-weighted imaging with background body signal suppression (DWIBS) provides both qualitative and quantitative imaging of breast lesions and are usually performed before contrast material injection (CMI). This study aims to assess whether the administration of gadolinium significantly affects DWIBS imaging.

Methods

200 patients were prospectively evaluated by MRI with STIR, TSE-T2, pre-CMI DWIBS, contrast enhanced THRIVE-T1 and post-CMI DWIBS sequences. Pre and post-CMI DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤ 1.44 × 10- 3 mm2/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated for both sequences and represented by ROC analysis. Pre and post-CMI ADC values were compared by using the paired t test.

Results

In 150/200 (59%) patients, pre and post-CMI DWIBS indicated the presence of breast lesions, 53 (35%) with ADC values of > 1.44 × 10- 3 mm2/s and 97 (65%) with ADC ≤ 1.44 × 10- 3 mm2/s. Pre-CMI and post-DWIBS sequences obtained the same sensitivity, specificity, DA, PPV and NPV values of 97%, 83%, 89%, 79% and 98%. The mean ADC value of benign lesions was 1.831 ± 0.18 × 10- 3 mm2/s before and 1.828 ± 0.18 × 10- 3 mm2/s after CMI. The mean ADC value of the malignant lesions was 1.146 ± 0.16 × 10- 3 mm2/s before and 1.144 ± 0.16 × 10- 3 mm2/s after CMI. No significant difference was found between pre and post CMI ADC values (p > 0.05).

Conclusion

DWIBS imaging is not influenced by CMI. Breast MR protocol could be modified by placing DWIBS after dynamic contrast enhanced sequences in order to maximize patient cooperation.  相似文献   

4.

Purpose

To retrospectively identify apparent diffusion coefficient (ADC) values of pediatric abdominal mass lesions, to determine whether measured ADC of the lesions and signal intensity on diffusion-weighted (DW) images allow discrimination between benign and malignant mass lesions.

Materials and Methods

Approval for this retrospective study was obtained from the institutional review board. Children with abdominal mass lesions, who were examined by DW magnetic resonance imaging (MRI) were included in this study. DW MR images were obtained in the axial plane by using a non breath-hold single-shot spin-echo sequence on a 1.5-T MR scanner. ADCs were calculated for each lesion. ADC values were compared with Mann–Whitney U test. Receiver operating characteristic curve analysis was performed to determine cut-off values for ADC. The results of visual assessment on b800 images and ADC map images were compared with chi-square test.

Results

Thirty-one abdominal mass lesions (16 benign, 15 malignant) in 26 patients (15 girls, 11 boys, ranging from 2 days to 17 years with 6.9 years mean) underwent MRI. Benign lesions had significantly higher ADC values than malignant ones (P<.001). The mean ADCs of malignant lesions were 0.84±1.7×10−3 mm2/s, while the mean ADCs of the benign ones were 2.28±1.00×10−3 mm2/s. With respect to cutoff values of ADC: 1.11×10−3 mm2/s, sensitivity and negative predictive values were 100%, specificity was 78.6% and positive predictive value was 83.3%. For b800 and ADC map images, there were statistically significant differences on visual assessment. All malignant lesions had variable degrees of high signal intensity whereas eight of the 16 benign ones had low signal intensities on b800 images (P<.001). On ADC map images, all malignant lesions were hypointense and most of the benign ones (n=11, 68.7%) were hyperintense (P<.001).

Conclusion

DW imaging can be used for reliable discrimination of benign and malignant pediatric abdominal mass lesions based on considerable differences in the ADC values and signal intensity changes.  相似文献   

5.

Purposes

To evaluate the diagnostic value of diffusion-weighted MRI (DWI) and combination of conventional MRI and DWI to predict metastatic axillary lymph nodes in breast cancer.

Materials and methods

Two hundred fifty-two breast cancer patients with 253 axillae were included. The morphological parameters on axial T2-weighted images without fat saturation and apparent diffusion coefficient (ADC) values were retrospectively analyzed. An independent t-test/chi-square test and receiver operating characteristics (ROC) curve analysis were used.

Results

On conventional MRI, short and long axis length, maximal cortical thickness, relative T2 value, loss of fatty hilum (p < 0.001 for each), and eccentric cortical thickening (p < 0.003) were statistically significantly different between the metastatic and nonmetastatic groups. The short axis to long axis ratio was not a statistically significant parameter. The ADC value was significantly different between the 2 groups, with an AUC that was higher than that of conventional MR parameters (AUC, 0.815; threshold, ≤ 0.986 × 10–3 mm2/sec; sensitivity, 75.8%; specificity, 83.9%). Using the adopted thresholds for each parameter, a total number of findings suggesting malignancy of 4 or higher was determined as the threshold, with high specificity (90.1%).

Conclusion

Using conventional MRI and DWI, we can evaluate the axilla in breast cancer with high specificity.  相似文献   

6.

Purpose

To evaluate the non-Gaussian water diffusion properties of prostate cancer (PCa) and determine the diagnostic performance of diffusion kurtosis (DK) imaging for distinguishing PCa from benign tissues within the peripheral zone (PZ), and assessing tumor lesions with different Gleason scores.

Materials and Methods

Nineteen patients who underwent diffusion weighted (DW) magnetic resonance imaging using multiple b-values and were pathologically confirmed with PCa were enrolled in this study. Apparent diffusion coefficient (ADC) was derived using a monoexponential model, while diffusion coefficient (D) and kurtosis (K) were determined using a DK model. Differences between the ADC, D and K values of benign PZ and PCa, as well as those of tumor lesions with Gleason scores of 6, 7 and ≥ 8 were assessed. Correlations between parameters D and K in PCa were analyzed using Pearson’s correlation coefficient. ADC, D and K values were correlated with Gleason scores of 6, 7 and ≥ 8, respectively.

Results

ADC and D values were significantly (p < 0.001) lower in PCa (0.79 ± 0.14 μm2/ms and 1.56 ± 0.23 μm2/ms, respectively) compared to benign PZ (1.23 ± 0.19 μm2/ms and 2.54 ± 0.24 μm2/ms, respectively). K values were significantly (p < 0.001) greater in PCa (0.96 ± 0.20) compared to benign PZ (0.59 ± 0.08). D and K showed fewer overlapping values between benign PZ and PCa compared to ADC. There was a strong negative correlation between D and K values in PCa (Pearson correlation coefficient r = − 0.729; p < 0.001). ADC and K values differed significantly in tumor lesions with Gleason scores of 6, 7 and ≥ 8 (p < 0.001 and p = 0.001, respectively), although no significant difference was detected for D values (p = 0.325). Significant correlations were found between the ADC value and Gleason score (r = − 0.828; p < 0.001), as well as the K value and Gleason score (r = 0.729; p < 0.001).

Conclusion

DK model may add value in PCa detection and diagnosis. K potentially offers a new metric for assessment of PCa.  相似文献   

7.

Purpose

Here we describe our first experience with contrast-enhanced (CE) MRI of breast cancer at 7 tesla (T), compared to 3 T and histopathology.

Materials and Methods

A 52 year old female patient with a mammographically suspicious breast mass (BI-RADS V) underwent 7 T CE-MRI. Results were described according to the BI-RADS-MRI criteria and compared to 3 T and histopathology.

Results

After contrast administration, a homogeneously enhancing, irregular spiculated mass was depicted at both 3 T and 7 T; sizes were identical. The most malignant kinetic curve was characterized by a rapid initial rise followed by a wash-out pattern in the delayed phase, i.e. a type 3 curve, at both field strengths. Even though T1-effects of contrast agents are suggested to be reduced at higher fields, quantification of contrast enhancement-to-noise ratio showed a ratio of 4.6 at 7 T and 2.8 at 3 T when comparing contrast-to-noise of the mass before and after contrast administration. Both examinations, using a single dose of gadolinium-based contrast agent, achieved good image quality. Final histopathological evaluation showed an invasive ductulolobular carcinoma with an intraductal component.

Conclusion

This initial experience suggests that clinical contrast-enhanced 7 T MRI of the breast is technically feasible and may allow BI-RADS-conform analysis.  相似文献   

8.

Objective

The purpose of this study was to assess the influence of liver cirrhosis and portal hypertension on diffusion coefficients of the spleen.

Material and Methods

We retrospectively evaluated 50 patients with liver cirrhosis and 50 patients without any history of liver disease who underwent magnetic resonance imaging of the upper abdomen, including echo planar diffusion-weighted imaging using b values of 50, 300 and 600 mm2/s. Spleen apparent diffusion coefficient (ADC), liver ADC, muscle ADC and normalized spleen ADC (defined as the ratio of spleen ADC to muscle ADC) were compared between cirrhotic patients and patients in the control group and correlated with Child–Pugh stages. Reproducibility was assessed by measuring interclass correlation coefficient (n = 11). Additionally, in eight patients, ADC measurements were performed 1 day before and 3 days after transjugular intrahepatic portosystemic shunt (TIPSS) implantation.

Results

Compared with control subjects, patients with cirrhosis and portal hypertension had significantly higher spleen ADCs (P = .0001). There was a statistically significant correlation between Child–Pugh grade and spleen ADC (Pearson correlation coefficient, observer 1 r = 0.6, P = .0001; observer 2 r = 0.5, P = .0001). After TIPSS implantation, we observed a reduction in spleen ADC values. Spleen ADC measurements showed a high reproducibility (interclass correlation coefficient 0.75, P = .001).

Conclusion

Our data suggest that different stages of liver cirrhosis and portal hypertension correlate with ADC values of the spleen. Furthermore, ADC values of the spleen decrease after TIPSS implantation. Further studies are required to understand the potential clinical values of these observations.  相似文献   

9.

Purpose

To present diffusion and perfusion magnetic resonance imaging (MRI) characteristics of focal nodular hyperplasia (FNH) of the liver.

Materials and Methods

Thirty-five patients with 52 FNHs (21 were pathologically-confirmed) underwent MRI at 1.5-T device. MR diffusion [diffusion-weighted imaging (DWI)] was performed using a free-breathing single-shot, spin-echo, echo-planar sequence with b gradient factor value of 500 s/mm². MR perfusion [perfusion-weighted imaging (PWI)] consisted of a 3D free-breathing LAVA sequence repeated up to 5 minutes after injection of 7 mL Gd-BOPTA (MultiHance, Bracco, Italy) and 20 mL saline flush at a flow rate of 4 mL/s. Apparent diffusion coefficient (ADC) and time-signal intensity curve (TSIC) were obtained for both normal liver and each FNH by two reviewers in conference; maximum enhancement (ME) percentage, time to peak enhancement (TTP), and maximal slope (MS) were also calculated.

Results

On DWI mean ADC value was 1.624×10− 3 mm2/s for normal liver and 1.629×10− 3 mm2/s for FNH. ADC value for each FNH and the normal liver was not statistically different (P= .936). On PWI, TSIC-Type 1 (quick and marked enhancement and quick decay followed by slowly decaying) was observed in all 52 FNHs, and TSIC-Type 2 (fast enhancement followed by slowly decaying plateau) in all normal livers. The mean ME, TTP and MS values were significantly different for FNH and normal liver (P= .005).

Conclusion

FNHs of the liver showed typical diffusion and perfusion MRI characteristics in all cases. On the ADC map, we could get similar value between the FNHs and the background parenchyma. On the perfusion imaging, FNHs showed a different pattern distinguished from the background liver.  相似文献   

10.

Purpose

To evaluate the semiquantitative DCE and quantitative DWI parameters in endometrial cancer, in order to assess the presence of neoplastic tissue and normal myometrium and to ascertain a potential relationship with tumor grade.

Methods and materials

A total of 57 patients with biopsy-proven endometrial adenocarcinoma who underwent MR imaging examination for staging purposes were retrospectively evaluated. Imaging protocol included multiplanar T1- and T2-weighted TSE, DCE T1-weighted (THRIVE; 0, 30, 90 and 120 seconds after intravenous injection of gadolinium) and DWIBS sequences (b values = 0 and 1000 mm2/s). Color perfusion and ADC maps were automatically generated on dedicated software. Relative enhancement (RE, %), maximum enhancement (ME, %), maximum relative enhancement (MRE, %), time to peak (TTP, s) and mean apparent diffusion coefficient (ADC) were calculated by manually drawing a region of interest (ROI) both on the neoplastic tissue and the normal myometrium. Histopathology was used as reference standard.

Results

Histopathological analysis confirmed the presence of endometrial carcinoma in all patients. Neoplastic tissue demonstrated significantly lower (P < 0.001) values of RE (%) 63.92 ± 35.68; ME (%) 864.91 ± 429.54 and MRE (%) 75.97 ± 38.26 as compared to normal myometrium (RE (%) 151.43 ± 55.99; ME (%) 1800.73 ± 721.32; MRE (%) 158.28 ± 54.05). TTP was significantly higher (P < 0.05) in tumor lesion (385.51 ± 1630.27 vs 195.44 ± 78.69). Mean ADC value of neoplastic tissue (775.09 ± ?220.73 × 10− 3 mm2/s) was significantly lower (P < 0.05) than in myometrium (1602.37 ± 378.54 × 10− 3 mm2/s). The analysis of perfusion and diffusion parameters classified according to tumor grades, showed a statistically significant difference only for RE (P = 0.043) and ME (P = 0.007).

Conclusions

Perfusion parameters and mean ADC differ significantly between endometrial cancer and normal myometrium, potentially reflecting the different microscopical features of cellularity and vascularity; however a significant relationship with tumor grade was not found in our series.  相似文献   

11.

Background and purpose

The use of diffusion-weighted magnetic resonance imaging (DW-MRI) as a surrogate biomarker of response in preclinical studies is increasing. However, before a biomarker can be reliably employed to assess treatment response, the reproducibility of the technique must be established. There is a paucity of literature that quantifies the reproducibility of DW-MRI in preclinical studies; thus, the purpose of this study was to investigate DW-MRI reproducibility in a murine model of HER2 + breast cancer.

Materials and methods

Test–Retest DW-MRI scans separated by approximately six hours were acquired from eleven athymic female mice with HER2 + xenografts using a pulsed gradient spin echo diffusion-weighted sequence with three b values [150, 500, and 800 s/mm2]. Reproducibility was assessed for the mean apparent diffusion coefficient (ADC) from tumor and muscle tissue regions.

Results

The threshold to reflect a change in tumor physiology in a cohort of mice is defined by the 95% confidence interval (CI), which was ± 0.0972 × 10- 3 mm2/s (± 11.8%) for mean tumor ADC. The repeatability coefficient defines this threshold for an individual mouse, which was ± 0.273 × 10- 3 mm2/s. The 95% CI and repeatability coefficient for mean ADC of muscle tissue were ± 0.0949 × 10- 3 mm2/s (± 8.30%) and ± 0.266 × 10- 3 mm2/s, respectively.

Conclusions

Mean ADC of tumors is reproducible and appropriate for detecting treatment-induced changes on both an individual and mouse cohort basis.  相似文献   

12.

Purpose

To investigate the influence of dual-source parallel radiofrequency (RF) excitation on clinical breast MR images.

Methods

A 3 T MR system with both dual-source and conventional single-source RF excitations was used to examine 22 patients. Axial TSE-T2WI with fat suppression, TSE-T1WI without fat suppression, THRIVE (3D field echo) and DWI (SE-EPI) were obtained by using both excitation techniques. Image homogeneity, image contrast and lesion conspicuity were measured or independently scored by two radiologists and were compared by paired-sample t test or Wilcoxon test.

Results

Both excitations revealed 24 lesions. For SE sequences using dual-source mode, image homogeneity was improved (P = 0.00), scan time was reduced, and ghost artifacts on DWI were significantly reduced (P = 0.00). However, image contrast was not increased and lesion conspicuity had no significant difference between two modes, except DWI on which lesion conspicuity was significantly improved (P = 0.00), due to less ghost artifacts. For field-echo sequence, image homogeneity, acquisition time, image contrast and lesion conspicuity had no significant difference between the two modes.

Conclusions

Dual-source parallel RF transmission has some added value for improving breast image quality. However, its value is limited in terms of improving lesion detection and characterization.  相似文献   

13.

Purpose

To investigate diffusion-weighted (DWI) and dynamic contrast-enhanced MR imaging (DCE-MRI) as early response predictors in cervical cancer patients who received concurrent chemoradiotherapy (CCRT).

Materials and methods

Sixteen patients with cervical cancer underwent DWI and DCE-MRI before CCRT (preTx), at 1 week (postT1) and 4 weeks (postT2) after initiating treatment, and 1 month after the end of treatment (postT3). At each point, apparent diffusion coefficient (ADC) and DCE-MRI parameters were measured in tumors and gluteus muscles (GM). Tumor response was correlated with imaging parameters or changes in imaging parameters at each point.

Results

At each point, ADC, Ktrans and Ve in tumors showed significant changes (P < 0.05), as compared with those of GM (P > 0.05). PostT1 tumor ADCs showed a significant correlation with tumor size response at postT2 (P = 0.041), and changes in tumor ADCs at postT1 had a significant correlation with tumor size (P = 0.04) and volume response (P = 0.003) at postT2. In tumors, preTx Ktrans and Ve showed significant correlations with tumor size at postT3 (P = 0.011) and tumor size response at postT2 (P = 0.019), respectively.

Conclusion

DWI and DCE-MRI, as early biomarkers, have the potential to evaluate therapeutic responses to CCRT in cervical cancers.  相似文献   

14.

Purpose

The purpose of the study was to determine significant imaging features to differentiate between infiltrative hepatocellular carcinoma (HCC) and confluent fibrosis (CF) in liver cirrhosis using Gd-EOB-DTPA-enhanced 3-T magnetic resonance imaging.

Material and methods

Nineteen infiltrative HCCs and eight CFs were included. We evaluated the difference in imaging findings and apparent diffusion coefficient (ADC) between the two entities. We compared T2-weighted image (WI) and hepatobiliary phase (HBP) in terms of the clarity of the lesion outer margin.

Results

Seventeen infiltrative HCCs showed lobulated margin, while focal CFs showed either straight (n = 3) or irregular margins (n = 5) (P = .001). All infiltrative HCCs had intact or bulging contours, and all focal CFs showed capsular retraction (P = .001). Fourteen infiltrative HCCs and two focal CFs showed arterial enhancement (P = .035). The ADC of infiltrative HCCs was significantly lower than that of CFs (P = .001). Satellite nodules were noted in 10 infiltrative HCCs. In terms of outer margin clarity, infiltrative HCCs showed a more distinct margin on HBP than on T2-WI (P = .005), while these two sequences were not significantly different in focal CFs (P = 1.000).

Conclusion

HBP improved the imaging characteristics of infiltrative HCC, allowing it to be distinguished from focal CF. Infiltrative HCC showed lower ADC values than focal CF. Lobular configuration, contour bulging, enhancement pattern, associated satellite nodules and portal vein thrombosis were still found to be highly suggestive MR findings for infiltrative HCC.  相似文献   

15.
16.

Purpose

The purpose was to describe magnetic resonance imaging (MRI) findings of breast cancer liver metastasis using gadoxetic acid (Gd-EOB-DTPA) with an emphasis on the added value of the hepatobiliary phase (HBP).

Material and methods

Nine patients with 13 liver metastases were included in the study after the medical records of 29 breast cancer patients who underwent Gd-EOB-DTPA-enhanced MRI between February 2008 and June 2010 were reviewed. The diagnoses of liver metastasis were established by percutaneous liver biopsy or surgery and on the basis of image findings. Two radiologists retrospectively evaluated signal intensity (SI) and sizes of metastases and patterns of enhancement in an HBP. The SI ratio was calculated as the SI of the central hyperintense portion in “target” lesions divided by the SI of nearby normal liver parenchyma on the HBP. We also measured apparent diffusion coefficient (ADC) values from Diffusion Weighted Image (DWI).

Results

Liver metastases were all hypointense [n=13/13 (100%)] on T1-weighted imaging (WI), and many lesions had a “target” appearance with a central high SI and a peripheral low SI rim (47%) on T2WI. Dynamic study showed rim enhancement on the arterial phase (85%) and a “target” appearance, consisting of a central enhancing portion with peripheral washout or hypointense rim, on the HBP (62%). The mean SI ratio was 0.7. The mean ADC value of “target” appearing metastases was 1.25 (×10−3 mm2/s; range 1.3–1.6) compared with a mean value of 0.8 (×10−3 mm2/s; range 0.8–1.4) in homogeneous defect on the HBP. There was statistically significant difference (P<.05).

Conclusion

Breast cancer liver metastases commonly demonstrated as a peripheral ring enhancement on arterial dominant phase and a target sign with a central round enhancing portion and a peripheral hypointense rim on the HBP.  相似文献   

17.

Purpose

The objective of this study was to evaluate diffusion anisotropy of the breast parenchyma and assess the range and repeatability of diffusion tensor imaging (DTI) parameters in normal breast tissue.

Materials and Methods

The study was approved by our institutional review board and included 12 healthy females (median age, 36 years). Diffusion tensor imaging was performed at 1.5 T using a diffusion-weighted echo planar imaging sequence. Diffusion tensor imaging parameters including tensor eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured for anterior, central and posterior breast regions.

Results

Mean normal breast DTI measures were λ1=2.51×10−3 mm2/s, λ2=1.89×10−3 mm2/s, λ3=1.39×10−3 mm2/s, ADC=1.95±0.24×10−3 mm2/s and FA=0.29±0.05 for b=600 s/mm2. Significant regional differences were observed for both FA and ADC (P<.05), with higher ADC in the central breast and higher FA in the posterior breast. Comparison of DTI values calculated using b=0, 600 s/mm2 vs. b=0, 1000 s/mm2, showed significant differences in ADC (P<.001), but not FA. Repeatability assessment produced within-subject coefficient of variations of 4.5% for ADC and 11.4% for FA measures.

Conclusion

This study demonstrates anisotropy of water diffusion in normal breast tissue and establishes a normative range of breast FA values. Attention to the influence of breast region and b value on breast DTI measurements may be important for clinical interpretation and standardization of techniques.  相似文献   

18.

Objectives

To investigate and optimize diffusion-weighted imaging (DWI) acquisitions for pancreatic cancer at 3.0 T.

Methods

Forty-five patients with pancreatic cancer were examined by four DWI acquisitions with b values = 0 and 600 s/mm2 at 3.0 T, including breath-holding DWI (BH-DWI), respiratory-triggered DWI (TRIG-DWI), respiratory-triggered DWI with inversion–recovery technique (TRIGIR-DWI), and free-breathing DWI with inversion–recovery technique (FBIR-DWI). Artifacts, contrast ratio (CR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of pancreatic cancer were statistically compared among DWI acquisitions.

Results

TRIGIR-DWI displayed the lowest artifacts and highest CR compared to other DWI acquisitions. CNRs of pancreatic cancer in TRIG-DWI and TRIGIR-DWI were statistically higher than that in FBIR-DWI and BH-DWI. Different ADCs between pancreatic cancer and noncancerous pancreatic tissues were noticed by a paired-samples T test in TRIG-DWI (p = 0.017), TRIGIR-DWI (p = 0.00001) and FBIR-DWI (p = 0.000041).

Conclusions

TRIGIR-DWI may be the optimal acquisition of DWI for pancreatic cancer at 3.0 T.  相似文献   

19.

Purpose

The objective of this paper was to investigate the value of apparent diffusion coefficients (ADCs) for differential diagnosis among solid pancreatic masses using respiratory triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique (RT-IR-DWI) at 3.0 T.

Materials and Methods

20 normal volunteers and 72 patients (Pancreatic ductal adenocarcinoma [PDCA, n = 30], mass-forming pancreatitis [MFP, n = 15], solid pseudopapillary neoplasm [SPN, n = 12], and pancreatic neuroendocrine tumor[PNET, n = 15]) underwent RT-IR-DWI (b values: 0 and 600 s/mm2) at 3.0 T. Results were correlated with histopathologic data and follow-up imaging. ADC values among different types of pancreatic tissue were statistically analyzed and compared.

Results

Statistical difference was noticed in ADC values among normal pancreas, MFP, PDCA, SPN and PNET by ANOVA (p < .001). Normal pancreas had the highest ADC value, then followed by PNET, PDCA, MFP and SPN. There was noticeable statistical difference in ADC values among PDCA, MFP and normal pancreas by Least Significant Difference (LSD) (p < .001). ADC of SPN was statistically lower than that of PNET (p = 0.1800 × 10− 4), PDCA (p = 0.0300 × 10− 4) and normal pancreas (p = 0.0007 × 10− 4). ADC of PNET was statistically lower than that of normal pancreas (p = 0.0360) and higher than that of MFP (p = 9.3000 × 10− 4).

Conclusions

ADC measurements using RT-IR-DWI at 3.0 T may aid to disclose the histopathological pattern of normal pancreas and solid pancreatic masses, which may be helpful in characterizing solid pancreatic lesions.  相似文献   

20.

Purpose

To compare the diagnostic performance of the noncontrast MRI including DWI to the standard MRI for detecting hepatic malignancies in patients with chronic liver disease.

Materials and methods

We included 135 patients with 136 histologically-confirmed hepatocellular carcinomas (HCCs), 12 cholangiocarcinomas, and 34 benign lesions (≤ 2.0 cm), and 22 patients with cirrhosis but no focal liver lesion who underwent 3.0 T liver MRI. Noncontrast MRI set (T1- and T2-weighted images and DWI) and standard MRI set (gadoxetic acid-enhanced and noncontrast MRI) were analyzed independently by three observers to detect liver malignancies using receiver operating characteristic analysis.

Results

The Az value of the noncontrast MRI (mean, 0.906) was not inferior to that of the combined MRI (mean, 0.924) for detecting malignancies by all observers (P > 0.05). For each observer, no significant difference was found in the sensitivity and specificity between the two MRI sets for detecting liver malignancies and distinguishing them from benign lesions (P > 0.05), whereas negative predictive value was higher with the combined MRI than with the noncontrast MRI (P = 0.0001). When using pooled data, the sensitivity of the combined MRI (mean 94.8%) was higher than that of the noncontrast MRI (mean, 91.7%) (P = 0.001), whereas specificity was equivalent (78.6% vs 77.5%).

Conclusion

Noncontrast MRI including DWI showed reasonable performance compared to the combined gadoxetic acid-enhanced and noncontrast MRI set for detecting HCC and cholangiocarcinoma and differentiating them from benign lesions in patients with chronic liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号